-A262 696 \
A2 i DTIC v

APR7 1593,

C

The Second Garnet Compendium:
Collected Papers 1990-1992

edited by
Brad A. Myers

February 1993
CMU-CS-93-108

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

TV A v s i AR Ao e

DITRIE DR T T e wee A

Approved it pusie IR
Du'cnpnuan Unlbimitad

o

Abstract

This technical report brings together nine papers about various aspects of the Gamet project. It is a sequel
to Computer Science Technical Report CMU-CS-90-154 which contained articles about Garnet from
1989-1990.

Copyright © 1993 Carnegie Mellon University

This research was sponsored by the Avionics Laboratory, Wright Rescarch and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597. Additional support for Gamet has been provided by NEC Corporation,
Apple Computer, Inc., Adobe Systems, Inc., and the General Electric Company.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
rcpresenting the official policies, either expressed or implied, of NEC, Apple, Adobe, GE, or the U.S. government.

. 93-07193
98 4 06 075 B .\\\\\M\\\\\\\\\\\\\\\.\\\‘\\\\\\\\\\\\\\\\\\\,Z%\ i

Keywords: Gamet, user interface development environments, user interface management systems,
toolkits, constraints, interface builders, object-oriented programming, direct manipulation

Forward

The Gamet User Interface Development Environment contains a comprehensive set of tools that make
it significantly easier to design and implement highly-interactive, graphical, direct manipulation user
interfaces. The lower layers of Gamet provide an object-oriented, constraint-based graphical toolkit thzt
allows properties of graphical objects to be specified in a simple, declarative manner and then maintained
automaticaily by the system. The higher layers of Gamet include a number of interactive tools that allow
much of the user interface to be created by demonstration without programming.

This technical report coilects together a number of recent papers about Gamet, some of which have
been or will be published elsewhere. Also inciuded are a collection of pictures of applications creatcd
using Gamet. A previous technical report (CMU-CS-90-154) contained the papers from 1989 through
1990, incluaing an introductory article describing all of Gamet which appeared in /EEE Computer in
November, 1990. If you are not familiar with Garnet, it is best to read that articie first. There is also a
complete reference manual for Gamet that is revised about every six months. The current version of the
manual is CMU-CS-90-117-R3.

The first four papers discuss the toolkit level of Gamet. The underlying object sysicm is the topic of
the first paper, page 1. Next, is a paper describing the constraint system (page 17). These and other
features contribute to a unique programming style in Gamet, as described on page 27. The next paper
summarizes some reasons that Gamet is good for creating interactive design tools (page 45). The last five
articles discuss the higher-level tools in Gamet. First, a chapter from an upcoming book summanzes all
the **demonstrational’’ aspects of Gamet (page 69). The two papers on the Gilt interface builder describe
its technique for increasing application and user interface separation (page 89) and achieving consistent
look-and-feel across applications (page 99). The C32 spreadsheet system (page 107) helps impiement
constraints when the simple icons in Lapidary are insufficient. The new Marmyuise tool allows the overall
behavior of the interface to be defincd (page 115). Finally, a collection of picturcs of sysiems created
using Gamet starts on page 123.

As mentioned in the articles, Gamet is available for anonymous FTP. To rctricve the system, fip 10
a.gp.cs.cmu.edu (128.2.242.7). When asked to log in, use anonymous, and your namc as the
password. Then change to the gamct dircctory (note the double gamct's) and get the README
explanation file:

frp> cd /usr/garren'gar~e’ -
fip> gen REATME DT.:C or.
Now, follow the directions in the README file. T

_Accesxor' For i
| NTIS CRA&I .31
i D TAs]
l Uoannasoed 1
| Sointibie ot ‘
st fohunmsuits
f .
Qe N ¢ 5
! Drotbhonond “1,

I

' Auatabity Codes

}__..*- PR e am e e e e —
) AV] or

Lot Stecial

2
L
_

iv -

Second Gamet Compendium

Second Garnet Compendium s V- Table of Contents

Table of Contents

Efficient Implementation of an Integrated Prototype-Instance
and ODJECt SYSIEM.....ccuercriniirenrirriecrenreeerr et e cersessresaeeensenaees 1

The Importance of Indirect References in Constraint Models 17

Declarative Programming in a Prototype-Instance System:
Object-Oriented Programming Without Writing Methods 27

- Environment for Rapid Creation of Interactive Design Tools............ 45
Garnet: Use of DemoOnStration.........ccevueevevermemveineeseveeesenseescemenernnen. 69

Separating Applicatian Code from Toolkits:
Eliminating the Spaghetti of Call-Backs...........cccevevrvvevveeennen.. 89

Graphical Styles For Building User Interfaces by Demonstration.....99

Graphical Techniques in a Spreadsheet for
Specifying User Interfacesccooeeveevinencicnicceicccceeee 107

Marquise: Creating Complete User Interfaces by Demonstration ...115

Screen Shots from Selected Garnet Applications...............c.o.......... 123

Efficient Implementation of an Integrated
Prototype-Instance Object and Constraint System

Dario A. Giuse

School of Computer Science
Camegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
dzg@cs.cmu.edu

Brad A. Myers

School of Computer Science
Camegie Mellon University
5000 Forbes Avenue
Piusburgh, PA 15213
bam@cs.cmu.edu

Abstract

Brad Vander Zanden

107 Ayres Hall
Computer Science Deparment
University of Tennessee
Knoxville, TN 37996-1301
bvz@cs.utk.edu

KR is a portable object-oriented system with an integrated constraint maintenance mechanism. The
object system implements the prototype-instance model and supports dynamic redefinition of prototvpes.
Constraints express relationships among values, and are specified using arbitrary Lisp expressions. The
constraint system transparently keeps constraints up to date. For maximum performance, it is closely
integrated with the object system. Several mechanisms, such as constraint value caching and copy-down
inheritance, are used to improve performance. The close integration of object-oriented programming with
flexible constrain® maintenance makes the system well suited for a variety of application programs,
including highly interactive graphical applications. KR is the basic building block of the Gamet user

interface development toolkit.

Efficient Objects and Constraints -2

1. Introduction

KR [Giuse 90] is a portable object-oriented system with an integrated constraint maintenance
mechanism, written in Common Lisp. KR implements the prototype-instance model [Lieberman 86}, and
supports completely dynamic redefinition of prototypes with automatic change proy.agation.

The system began as an attempt to implement the best ideas found in frame systems without incurming
their typical performance penalty [Giuse 89]). Constraint maintenance was first implemented as a separate
layer on top of the existing language. After that experiment proved successful, we integrated constraints
with the basic language to provide efficient performance. The three components (object representation,
object-oriented programming, and constraint maintenance) are now closely integrated and present a
smooth interface to the application programmer.

KR provides the object-oriented model and constraint maintenance system for Gamet (Myers 90}, a
comprehensive user interface development environment for X/11. In addition to being used to implement
Gamet itself, KR is the implementation language for all Gamet applications. Such applications range
from simulations of computer security constraints [Tygar 87] to graphical editors such as Lapidary
[Myers 89], to visual programming applications. Other applications include speech-understanding
research at Camegie Mellon University [Young 89} and an intelligent language tutoring system for
Chinese [Giuse 88].

Performance has remained a central goal throughout the evolution of the system. We have striven 10
achieve excellent performance for common operations, while supporting advanced features usually
associated with experimental systems. KR does not attempt to implement every possible operation.
Object-oriented programming, in particular, is simpler than in CLOS [DeMichiel 89}, and is carefully
tailored for typical Gamet applications.

KR is the only widely-used system that implements the prototype-instance model of inheritance. This
model provides maximum flexibility, because any object can be used as a prototype for other objects.
The nction of class, in particular, is absent. For emphasis, we will use the terms ‘prototype’ and
‘instance’ in the remainder of this paper. It should be remembered, however, that in KR there is no
conceptual difference between those two terms. The same object can function as both a prototype and an
instance.

Changes to an object used as 1 prototype are always reflected in instances, including existing ones.
Consider, for example, a prototype for rectangles. The prototype typically supplies default values for
such parameters as border thickness and filling color. Rectangles created as instances of the prototype
will then inherit those parameters, unless the programmer explicitly overrides them. The prototype-
instance model allows the values in the prototype to be modified at any time. All rectangle instances are
then automatically modified to reflect the changes. It is even possible to change dynamically the
prototype used for an instance. For example, an objett with a rectangle prototype could be modified to
become an instance of a circle instead. All necessary changes happen automatically.

The complete integration of KR objects and constraints allows the application programmer 10 use
constraints for operations that would typically be implemented as (combinations of) mecthods in
traditional object-oriented systems. This results in a highly declarative, rather than procedural,
programming style [Myers 92].

3- Second Garnet Compendium

2. Related Work

KR integrates ideas from several areas, including object-orented systems, frame systems, and
constraint systems. The resulting combination provides a unique mix of object-oriented programming
and a declarative style of programming with constraints.

Historically, the first influence on KR came from frame systems. Systems such as KL-ONE {Brachman
77] and, especially, SRL [Fox et al. 84, Wright and Fox 83] were the primary influences. Unlike those
systems, however, KR limits the number of features in order to achieve excellent performance. The
system, in fact, began as an attempt to implement the best ideas from frame systems without incurring the
performance penalty usually associated with them [Giuse 89, Giuse 90]. In order to achieve good
performance, KR omits user-controlled inheritance paths, path grammars, slot specifiers, and multiple
contexts. However, it retains several of the dynamic features associated with frame systems, such as
user-defined inheritance slots, multiple inheritance, and the ability to add any slot to any object. Unlike
SRL, KR allows the user to set slots even without a prior declaration: setting a slot’s value creates the
slot, if none previously existed.

The object-oriented component was also partially influenced by SRL. Like that system, KR does not
distinguish between methods and ordinary values: any slot can contain a value or a method. As in SRL
and Flavors [Weinreb and Moon 81), methods are invoked by sending a message. KR does not support
generic functions, as found in both C++ [Stroustrup 86] and CLOS {Bobrow et al. 89]. The primary
reason for this choice ic that much of the functionality usually associated with generic functions is
implemented as constraints in KR.

The constraint maintenance component was initially modeled after Coral [Szekely and Myers 88], an
experimental constraint system written in CLOS. Coral, however, provided only a small portion of the
indirect reference constraints functionality found in KR. Whereas in KR a constraint can reference
arbitrary objects either directly or indirectly (by referring to slots that contain pointers to objects), Coral
only allowed the user to provide fixed lists of object names. The KR approach is much more flexible,
because it supports dynamic redefinition of the path leading to a desired value through any number of
objects, and dynamic changes to objects.

Because much of what programmers do is exploratory programming, KR does not force any compilc-
time typing, but rather relies oa Lisp’s runtime type checking. This approach is similar to that used in
other object-oriented systems such as Smalltalk-80 [Tesler 81, Goldberg and Robson 83] and SELF
(Ungar and Smith 91], but unlike the C++ compile-time typing system.

Several object-oriented systems advocate restricting access to object slots via a method-based interface.
This approach, already found in Flavors, is best exemplified by SELF, in which message passing is
considered the fundamental operation and objects access state solely by passing messages. KR takes the
opposite approach. Given the combination of object-oriented programming and constraint maintenance.
most KR programs use constraints as the primary abstraction, and therefore access state dircctly via slots.

3. The Object Model

KR supports both named and unnamed objects. Objects in KR arc collections of autribute/value pairs.
Each aaribute, known as a slot, has a name, which is unique within an object. KR objects are tvpically
created using the macro CREATE-INSTANCE, which allows the user to specily a prototype for the object as
well as a series of slots/values. it is possible to specify NIL as the prototype, in which case the new object
does not have any prototype (at least initially). The following call creatcs a new object named RECT-|
with two slots, :LEFT and :HEIGHT, and no prototype:

(create-instance "RECT-1 nil (:left 20) (:height 25))

Efficient Objects and Constraints -4

A slot contains a single vaiue, but the value can be of any Lisp type (such as a list or an array). Lisp
functions can be stored in ordinary slots, and can then be invoked as methods. The system does not
require methods to be defined or installed specially, although the macro DEFINE-MFTHOD is provided for
convenience. A special type of value, known as a formula, is uced o implement constraints, as expiained
below. A formula specifies how to compute a value based on other values. When a depended value
changes, the formula is (logically) reevaluated.

Slot names in KR begin with a colon. Any slot can be dynamicaily added to or removed from an
object, whether or not the slot is defined in any prototype. Setting an object’s slot with a value
automatically creates the slot, if needed. This makes it extremely easy to associate any piece of
information with any object, since slot names do not have to be predefined. For example, one can set the
value of slot :PERIMETER in object RECT-1 by typing:

{(s-value RECT~1 :perimeter 125.5)

The macro S-VALUE is used to set the value of a slot of an object, creating the slot if needed and replacing
any value that was there previously. The same function is also used to install a constraint on a siot.

Intemnally, slots can be of two types. The first type, known as a system-defined slot, is used for slots
that are common to most objects. Examples include the :IS-A slot, which points to the prototype of an
object, and the :LEFT slot, which indicates the leftmost edge of a graphical object. System-defined slots
provide highly optimized access. KR macros such as G-VALUE (which retrieves the value of a slot) and
S-VALUE expand into simple array references for system-defined slots. System-defined slots also use less
storage that ordinary slots, because their position is known at compile time. System-defined slots are
hard-wired into KR, and the application programmer cannot define new ones at run time. Adding system-
defined slots at the KR level, however, is extremely simple (although a necompﬂauon is necessary),
making it easy to accommodate the evolving needs of the Gamet system.

The second type of slot are user-defined slots. Any object can have as many user-defined slots as
needed. Such slots are slightly less efficient than system-defined ones, both in terms of performance and
of storage. Note that the distinction between system-defined and user-defined slots is invisible to the
user. Note also that there is no distinction in KR between class variables and instance variables; KR slots
can be used either way, and their status can be changed dynamically.

The slots of an object are stored in a variable-length array. In addition to a value, each slot also
contains information which is used intemally by KR, as shown in Figure 1. KR objccts are represented as
Lisp structures with two structure slots. The first entry is the name of the objcct, or NIL for unnamed
ohiects. The second entry contains the variable-length array of slot descriptors.

Each system-defined slot is represented by three entries in the array. Uscr-defined slots take four
entries, because the slot name needs to be stored as well. The first piece of information in a slot is the
slot’s current value (25 in the example). A special marker indicates slots that have no value.

The second piece of information associated with each slot is a collection of bits. ecncoded as an integer,
which determine the characteristics of the slot. Currently, three bits are uscd. The [irst bit. inherited-bit.
indicates whether the value in the slot was inherited from a prototype. The second bit, is-parent-bit,
indicates whether any instance of the object has inherited the value from this slot. The third bit,
constant-bit, indicates whether the slot is declared constant or was inferred constant (sce below).

The third piece of information in a slot is the list of formulas that depend on the value in the slot. In
Figure 1 this is shown as a list of three formulas (unnamed formulas are printed as "F" foilowed by a
unique integer). This list is used to notify all formulas that are potentially affected whenever the value of
the siot is modified. Slots that have only one dependent do not store a list, but just the formula itself.

5- Second Gamet Compendium

Name -4+—=RECT-1 | :height siot

S | [T 11]

25 <——y,— value | | dependents 4—=(F152 F276 F294)

L inherited-bit
e |S-pArent-it

Figure 1: Intemal representation of KR object RECT-1 with slot :HEIGHT

3.1 Inheritance

Inheritance in KR occurs through inheritance slots, i.e., slots that have been declared to the system
using the macro CREATE-RELATION. The only system-definea inheritance slot is :IS-A. [ts automatically
maintained inverse slot, :IS-A-INV, lists all instances of an object, and is used to propagate changes
automatically. The user may also declare new inheritance slots, with or without inverse slots. User-
defined inheritance slots provide the same inheritance behavior as the :IS-A slot.

Inheritance slots (such as :IS-A) may contain one or more values. Thus, KR implements dynamic
multiple inheritance, both through multiple values in the :IS-A slot, and through multiple inheritance slots
in the same object. The :IS-A hierarchy is searched first for inheritance. If no values are inherited through
the :1s-A hierarchy, and other inheritance slots are present, the other slots are then searched in tum.
Multiple inheritance is not currently used in Garnet, but some non-Gamet applications use it.

The following code creates the two objects A and B, and connects B to A via the :IS-A slot:

{create-instance "A nil (:left 1Q)) ; create top object, A
(create~instance ‘B A (:top 15}) ; B ris-a A

Printing objects A and B shows the following:
{A :LEFT = 10

+IS-A-INV = B} ; automatically created inverse slot
{B :IS-A = A ; inheritance slot
:TOP = 15}

Note that slot :IS-A-INV is automatically set by the system. Because :IS-A is an inheritance slot. asking
for the value of slot :LEFT in B would return the vaiue 10, inheriting it from A.

Access to inherited slots is a potential performance bottleneck. KR implements a careful tradeoff
‘ween access time and storage requirements. When an instance is first created, only slots that are
specifically defined by the user are actually created as local slots. In the examplc above, slot :LEFT in
object B is not created, because it is not mentioned explicitly. When the value of a slot is requested and is
not present locally, the system examines the inheritance hierarchy, looking for a prototype which supplics
a value for the slot. If one is found, the system copics the value into the instance and all intcrvening

Efficient Objects and Constraints -6

prototypes (if any). The is-parent-bit is set in the slot from which the value is inherited, and in all the
intervening prototypes.

When an inherited value is copied down, it is marked as inherited via the inherited-bit of each slot into
which it is copied. A subsequent request for the slot will then find the inherited value locally, and thus
will be just as efficient as a local slot access. Inheritance, therefore, uses a lazy copy-down mechanism,
since no copy is made until a value is actually requested. This solution represents an effective tradeoff
between storage (which is only allocated when needed) and access time (which, except for the very first
time, is just as fast as local access).

Implementing inheritance via lazy copying of values from prototypes 1o instances requires special care
when changes are made to the hierarchy, or to one of the prototypes. In the example above, changing slot
:LEFT in object A must also change the copy of the value in slot :LEFT of object B, since the latter inherited
its value from A. Similarly, a change in the inheritance hierarchy (such as changing slot :IS-A in object B)
would also cause old inherited values to become invalid.

KR handles such situations by recursively eliminating from instances all the values that have been
inherited from their prototypes. When an inherited value is eliminated from an instance, it is replaced by
a special no-value marker which can never appear as a user-defined value. Additionally, the inherited-bit
is cleared. The slot, then, looks exactly like a newly created slot that has never been accessed. The
change is recursively propagated down the hierarchy, stopping whenever an empty slot is reached, or
whenever a slot is found for which a local value was defined. The advantage of this scheme is that if the
slot in the prototype is changed again, it is not necessary to revisit the entire subtree of instances.

It might seem that during this recursive down-propagation one could simply set slots to the new value
in the prototype, rather than to the special no-value marker. However, this is undesirable for two reasons.
First of all, if the new value is a formula, a new copy of the formula wouid be required for each slot which
had inherited the value, because formulas contain local information for each slot. Second, this approach
would fail in the case of multiple inheritance, because some of the instances might in fact have inherited
values from a different prototype. In the presence of multiple inheritance, the current approach ensures
that when a value is requested it will be inherited from the correct prototype.

An interesting case of inheritance is structural inheritance, which refers to composite objects (i.e.,
objects that contain other objects as their components). When an instance of a composite object is
created, the system arranges for the entire structure to be copied. In addition to an instance of the object,
instances of each component are also created, and the structural connections among the various objects
are set appropriately. Structural inhe:itance is an extremely powerful abstraction, because it frees the uscr
from having to know whether an object being instanced is simple or composite. Even more imponantly,
KR's prototype-instance mode. means that any later change to the original composite object (the
prototype) will be automatically reflected in its instances. It then becomes possiblc to alter a prototype
dynamically and have the modifications propagate immediately to any instance.

4. Object-Oriented Programming

Object-oriented programming in KR is implemented via methods. Methods are procedural attachments
that can be associated with any object using DEFINE-METHOD, or simply by sctting a slot to a function
valne using S-VALUE. Internally, methods are stored in slots, just like any other KR value; the system
does not limit the number or types of methods that can be defined. Methods can be created or modified
dynamically, and any object can redetine any of its methods as necded. [f a locally redelined method is
eliminated, the prototype-defined method is automatically reused. This fully dynamic approach to
method handling is more reminiscent of full-fledged frame systems such as SRL than of traditional
object-oriented systems.

7- Second Gamet Compendium

A method in KR is invoked by sending a message 0 an object via the macro KR-SEND. In mos: cases,
- methods are not actually defined at the level of an individual object, but are inherited from its
prototype(s). Of course, the normal copying down mechanism is used for methods that are inherited from
some prototype. KR provides facilities to affect method combination, specifically a function that allows a
method to invoke a less specific method defined by some prototype of the current object. This part of the
language is not as complex as in other Lisp-based object-oriented systems such as CLOS, however,
because usually KR programs use a declarative approach based on constraints {Myers 92} instead of
methods. -

In addition w0 supplying default values, methods, and constraints, KR prototypes are also used to
control the initialization of instances. Immediately after an instance is created, the system looks for an
JINITIALIZE method (which is typically inherited). If one is defined, the system invokes it with the new
instance as a parameter. This initialization mechanism, akin to the one provided by many class-based
object systems, allows instances to be initialized using arbitrarily compiex user-defined methods.

The other component of the KR object model is a demon mechanism. It is possible to associate with
each object a demon, i.e., a procedural attachment that is invoked when certain slots in the object are
modified. Using demons, KR applications can effectively implement active values. Two separate
demons are executed at different stages in the value modification cycle (currently, Gamet only uses the
first one). The first demon is the invalidate demon. It is executed when a slot is invalidated, typically
because the slot contains a formula which depends on a value that changed. The invalidate demon is
executed with the old value still in the slot, allowing the demon to record the old value, if so desired. The
second demon is the pre-set demon. It is invoked immediately before the value in a slot is actually set.
The primary difference between the two demons is the timing: the invalidate demon is called immediately
after a formula becomes invalid, but the pre-set demon is not called until the value of the formula is
demanded. If the value of a formula is never demanded, the pre-set demon may never be called, but the
invalidate demon is always called. Note that the invalidate demon is called only when a formuia first
becomes invalid; slots that contain already invalid formulas are not affected.

When a slot in an object is modified, KR checks whether the slot requires a demon. This is specified
by storing the list of slot names in the system-defined slot :UPDATE-SLOTS. In most cases, the list of siot
names is actually inherited from some prototype. In Gamet, this list includes all the slots that control the
graphical appearance of objects. If the changed slot is in :UPDATE-SLOTS, KR looks for a demon for the
object. If one is found, it is called with the object and the slot as parameters.

Because demons are application-defined, they can perform any desired action. [n the Gamet graphical
object system, for example, the invalidate demon is used to support the update algorithm. which cnsures
that incremental changes to objects are reflected in the display. The Gamect demon records the fact that
the object was modified by adding it to a list of "dirty"” objects. At the next display update cycle, all dirty
objects are redisplayed with their new graphical features.

5. The Constraint Model

A constraint allows the value in a slot (the dependent value) to be computed from the values in other
slots. In doing so, a constraint specifies that the dependent value must be recompuied when any of the
other values change. The current version of KR implements lazy constraint cvaluation, which means that
recomputation does not take place until needed, i.e., until the dependent value is actually demanded. An
eager-evaluation version of constraint evaluation is currently under development,

Constraints are specified by a special type of object, called a formula, created by the macro FORMULA
(and its variant O-FORMULA, which is used for compiled constraints). Intemally, formulas arc represented
as Lisp structures. To illustrate the representation of formulas, consider executing the following KR

Efficient Objects and Constraints -8

code:

{create-instance ‘CIRCLE~2 n:il
(:ieft 4)
{:top ({n-formula (+ & (gv :SELF :left)))})

{g-value CIRCLE-2 :top)

The call to CREATE-INSTANCE creates an object named CIRCLE-2, sets its :LEFT slot 10 4, and sets the
:TOP slot to contain a formula which adds 6 to the contents of slot :LEFT. The call 10 G-VALUE requests the
value of slot :TOP, causing the formula to be evaiuated, and retums the value 10. The intemal structare of
the formula at this point is illustrated in Figure 2.

—

on-schema - ot 4

on-slot T top top Formula F49
cached- alue ~—t—e 10 (+ 6 (gv SELF eft))
is-a = NIl

executavie code ——e= <Compiled Lisp code>

exprassion ~—t+—» (+ 6 (gv :SELF :left))

number | valig

depends-on ~= CIRCLE-2.left

Figure 2: Intemal structure of 2 KR formula.

Two structure slots, on-schema and on-slot, are used to point to the object and slot on which the
formula is installed. The structure siot named cached-value holds the formula’s current cached value.
Instead of re-evaluating a formula every time its value is requested. KR caches the computed value in this
structure slot. A single valid bit (shown near the bottom of the structure) indicates whether the cached
value is valid. If any of the depended valucs change, the bit is reset, indicating that the cached value has
become stale and the formula will need to be re-cvaluated when its value is requesied.

The is-a structure slot is used to point to the formula’s parent: in our example. it contains NiL hecausc
the formula does not have any. The following two structure slots contain the cxecutable code for the
formula, and the oniginal expression that was used when the formula was created. The next structure siot
contains an integer which encodes the valid bit and the so-called cycle number. KR uscs this number for
two separate purposes. First, the number is set to 0 when the formula 1s created. indicaung that the
formula was never evaluated. Second, KR uses the number to detect constraint circulantics.

Constraint circularities arise when two formulas depend on each other’s value. To detect such cases, at
the beginning of each evaluation KR increments a global number. Before each formula is evaluated, KR
sets its cycle number to the global number. Before evaluating cach formula. however, the system checks
whether its cycle number equals the global number. Normally, cycle numbers should be stnctly lower
than the global number. If a formula is found whosc cycle number equals the global number, the formula
must have already been visited during the current evaluation cycle, and hence must be a part of a

9- Second Gamet Compendium

constraint circularity. KR ther breaks the i0op and returns the current cached value of the formula where
the circularity was detected. The values of the other formulas in the cycle are recomputed accordingly.

The final structure slot in a formula contains a list of dependencies, which is needed when the formula
is destroyed. This list allows the system to remove the formula from the dependents-list of all slots whose
values were requested by the formula. Without this list, stale pointers would be left around after a
formula is destroyed.

Unlike most constraint systems, in which constraints can only be specified using a restricted language
(Vander Zanden 89, Boming 79], constraints in KR can be .arbitrary Lisp expressions. [t is common for
application programmers to define complex constraint expressions that use conditionals, loops, local
‘variables, and the full range of Lisp functionality. The only limitation is that constraint expressions
should not have side effects, because the system does not guarantee the precise order of evaluation (or
re-evaluation) of constraints.

Constraints are closely integrated with the object model. First, a constraint is placed on a slot simply
by setting the value of the slot to be a formula object. From the user’s viewpoint, this is identical to
setting a slot with a regular value, except that the value is wrapped in a formula macro call. Second, a slot
that contains a constraint is accessed exactly like any other slot: constraint evaluation is transparent.
Third, change propagation is also transparent. When a slot is changed using S-VALUE, KR automatically
checks whether the slot was used in computing the value of any existing formula. All dependent formulas
are then recursively invalidated, and will be recomputed as needzd. Several optimizations are used t0
make this process efficient. If the slot is set to the same value it had before, no invalidation needs to
happen. Also, invalidation stops as soon as an invalid formula is reached, since the algorithm guarantees
that all formulas that depend on that formula will already have been invalidated. Note that the entirc
process is invisible to the user: all the user does is to set a value in a slot.

The advantages of allowing arbitrary Lisp expressions in constraints are clear. Programmers can
express very complicated behavior through constraints, e.g., determine the exact layout of composite
objects such as trees or variously-aligned lists of similar objects. Such complex constraints are typically
supplied by system implementors and inherited by all user-defined gadgets. For example, the Gamet
system provides composite lists of gadgets that are formarted using constraints. User-defined gadgets,
such as menus, that use these lists automatically inherit the system-defined constraints.

Conventional constraint systcms typically need to parse constraint expressions and determine what
values are being referenced. The fact that KR supports arbitrary Lisp expressions in constraints, however,
makes it impossible to precompute the list of all depended values. A constraint, for example, may invoke
user-defined functions, which might contain references to arbitrary values. KR solves this problem by
arranging for dependencies to be computed dynamically, as the constraint expression is being cvaluated.
This is done via the macro GV. Like G-VALUE, this macro retrieves the value from a slot. In addition,
however, GV also records the dependency, if needed. Consider the following formula expression. which
computes the right edge of an object by adding the object’s width to the left edgc of object RECT-3:

(+ (gv RECT-3 :left) (gv :SELF :width))

When this expression is evaluated, the first GV adds the current formula to the list of dependents of slot
:LEFT in object RECT-3 (the list of dependents is one of the three components of a slot, as shown in Figurc
1). The second :GV adds the formula to the list of dependents of slot :WIDTH in the current object. Once
these dependencies are set up, KR will invalidate the formuia whenever one of the depended values is
modified.

As shown in the example, :SELF can be used instead of an object name to indicate the object on which
the formula is installed. In addition, GV allows more than one slot namc to be specificd. For cxampie, the

Efficient Obiects and Constraints - 10

following formula expression can be used to fetch the value of slot :LEFT from the object contained in slot
:PARENT of the current object: (gv :SELF :parent :left).

In this case, GV is used w0 specify a path. Slot :PARENT is accessed to yield an object. The resulting
object is accessed and the value of its :LEFT slot is returned. Because (gv :SELF) is such a common
idiom, KR provides the equivalent macro GVL. The expression above could have been written as (gvl
:parent :left).

. An advantage of computing dependencies dynamically is that fewer dependencies may be set up.
Imagine an expression that contains a conditional. As long as only one branch of the conditional is taken,
there is no need to establish dependencies to values that might be needed in the other branch. This
prevents unnecessary work, since a change to one of those values could not affect the final value anyway.
Eliminating the need to parse constraint expressions, therefore, results in greater flexibility.

An important distinguishing feature of KR constraints is that they allow fully indirect
references [Vander Zanden 91]. Most existing constraint systems, by comparison, only allow hard-wired
object references [Vander Zanden 89, Myers 88]. In KR, constraints may refer to slots of other objects
indirectly: A typical example of an indirect reference is shown in Figure 3.

oBJ-3 |
deft Formula F104: (/ (gv :SELF :attached-to :ieft) 2)

CIRCLE-1 |

deft 30
(dependents: F183)

[RecT-12 |
iis-a OBJ-3

:attached-to CIRCLE-1
(dependents: F183)

left Formula F183: (/ (gv :SELF :attached-to :left) 2)

Figure 3: An inherited constraint which uses indirect rcferences.

The formula in slot :LEFT of object RECT-12, F183, was inhcrited from prototype OBIJ-3. Slot LEFT in
object RECT-12 is computed by referring to slot :LEFT in object CIRCLE-i. The current value is 15,
obtained by dividing 30 (the value in CIRCLE-1) by 2, as specified in the formula. The namc of that object
is stored in slot :ATTACHED-TO. Note that the constraint expression of the formula refers to the target
object only indirectly, using the contents of slot :ATTACHED-TO in the currcnt object (i.c., :SELF). The
constraint is effectively parameterized. Changing the value of slot :ATTACHED-TO in object RECT-12 will
automatically cause the value of slot .LEFT to be recomputed. The primary advantage of indirect
references is that they allow generic formulas to be defined by an object's prototype. Generic formulas
can be used verbatim in the instances, because they use relative paths without hard-wired object names.

Indirect references in KR constraints are possible because the system rccords the dependency of such
constraints on all the intervening links of the chain of references. In Figure 3, for cxample, both the
:ATTACHED-TO slot and object CIRCLE-1's :LEFT slot list formula F183 as their dependent. If slot

11 . Second Gamet Compendium

:ATTACHED-TO is set {0 a different value, say object NEW-OBJ, formula F183 is invalidaied. When the
value of object RECT-12’s :LEFT slot is requested, the formula will recompute a new value using the left
slot of object NEW-OBJ.

It is clear from the previous discussion that constraints interact with other parts of KR. A first
interaction is between constraints and values, because slots can contain either ordinary Lisp values or
formulas. This potential problem is avoided by letting all slot-accessing macros, such as G-VALUE and
GV, work on either type of slot. If a slot contains an ordinary Lisp value, the macros simply retum the
value. If a slot contains a formula, the macros evaluate the formula first (if its cached value is not valid)
and then return the value. This operation may actually trigger a complex chain of nested evaluations,
because the formula may depend on other formulas that also need to be re-evaluated. All of this,
however, happens transparently.

A second interaction is between constraints and inheritance. Because inherited values are actually
copied from the prototype into the instance, a change to a prototype may modify the (inherited) value in
an instance. Consider, for example, the case where object B (an instance of object A) inherits the value of
its :LEFT slot from A, as shown in Figure 4.

dleft 31
(is-parent)
is-a-inv B
I B l‘\ 7
lis-a A —_
Aeft 31 '
(is-inherited) E:_.Q:]
(dependents: F17) _ top Formula F17: (gv B left)

Figure 4: Modifying a slot in prototype A causes formula F17 to be invalidated.

Slot :TOP of object C is constrained to have the same value as object B's :LEFT slot. Now, imagine that
slot :LEFT in object A is changed. The value in slot :LEFT of instance B was inherited, and therefore it
changes (more precisely, its value is removed and replaced by a non-value, as explained in section 3.1).
Consequently, formula F17 in slot :TOP of object C must be invalidated, since the value on which it
depends has changed.

To address this problem, the inheritance mechanism described carlier is modificd as (ollows. When a
slot is changed, KR checks whether its previous value had been inhcrited by some other object: this
information is contained in the is-parent-bir of the slot. If so, the instances of the object arc recursively
visited. If any instance had inherited the value, the inhented value is removed from the slot. If, in
addition, some formula depends on the instance’s slot (as described by the siot’s list of dependents), the
formula (and the formula’s own dependents) are recursively invalidated. This process involves two
distinct graphs: the inheritance hierarchy, through which values may have been inhcrited from prototypes
into instances, and the constraint graph, which determines how values depend on other values.

Efficient Objects and Constrainis - 12

6. Special Efficiency Features

KR improves the efficiency of the constraint system by caching computed values in formulas. After a
formula is evaluated, its value is cached locally and can then be used over and over until the formula is
invalidated. Access to a cached value in a formula is only slightly slower than access 10 a locally defined,

regular value.

Another feature that is essential for performance is that user-specified constraints are compiled when
the file they are in is compiled. This is possible because the O-FORMULA macro expands into a LAMBDA
form containing the formula expression. The resulting code is extremely efficient and takes advantage of
all the built-in optimizations. Inside compiled constraints, for example, slot accessor macros are
expanded into array references.

KR contains several user-controlled features that make it easier to generate very efficient applicatons.
First, much of the error-checking code in the system is conditionally compiled. Once an application
program has been thoroughly tested, the user can simply run the system with the "no-debug" version of
KR, which eliminates most error checks. A second mechanism allows the application programmer (0
specify that certain paths in indirect reference constraints are immutable. For well-debugged object
hierarchies, this declaration allows constraint re-evaluation to become considerably faster by avoiding
unnecessary path traversals. It also saves storage by preventing unnecessary dependencies from being
created. A third mechanism, which is nearing completion, allows the programmer (o declare that certain
slots in an object are "constant”, i.c., their value will never change after the object is created. This
information is stored in a slot’s constans-bit. Formulas that only depend on constant slots can then be
eliminated automatically, further improving efficiency and storage requirements.

7. Conclusions

The current implementation of KR is the result of our collective experience in using the system over the
past several years. Whenever a choice existed, we have opted for solutions that could be implemented
efficiently without making the programming interface unnecessarily complex.

KR is a very flexible object system. It supports multiple inheritance on both system-defined and
user-defined inheritance slots, automatically maintained inverse slots, and the prototype-instance model
of inheritance. Prototypes may be modified dynamically. and the results are immediately propagated o
instances. Any object may be used as a prototype; no compile-time declarations arc necessary. Slots may
be added and removed from objects at will. It is also possible to change the prototype of any instance
from one object to another, causing all values that were inherited from the old prototype to change

appropriately.

KR also provides a very flexible constraint system. New constraints may be created dynamically. and
may be installed on any slot. Constraints can be specified as arbitrarily complex Lisp cxpressions.
Moreover, constraints can use indirect references, which offer maximum flexibility by allowing values to
be obtained from different objects at runtime. Constraints and inheritance interact properly. and changes
in the inhentance hierarchy are propagated through the constraint hierarchy as well.

KR demonstrates that object-oriented programming and constraint maintcnance can be effectively
integrated. This combination results in great flexibility and a unique programming style in which much
of the functionality usually associated with method invocation is performed by constraints. The system is
the only widely used object-oriented system in which the prototype-instance model is combined with
copy-down muitiple inheritance. We are currently experimenting with cxtcnsions that will funther
improve performance, such as user-specified declarations of constant siots and cager constraint
evaluation.

13- Second Garnet Compendiurmn

Acknowledgements

This research was sponsored by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under
Contract F33615-90-C- 1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the authors and shouid not be
interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

Bibliography

{Bobtm;r et al. 89] Bobrow, D.G.; DeMichiel, L.G.; Gabriel, R.P.; Keene, S.E.. Kiczales, G.; Moon, D.A.
Common Lisp Object System Specification. -
LISP and Symbolic Computation 1(3/4):245-394, January, 1989.

{Boming 79] Alan Boming.
Thinglab: A Constraint-Oriented Simulation Laboratory.
Technical Report SSL-79-3, Xerox Palo Alto Research Center, July, 1979.

[Brachman'77] Brachman, R.J.
A structural paradigm for representing knowledge.
PhD thesis, Harvard University, May, 1977.

(DeMichiel 89] DeMichiel, L.G.
Overview: The Common Lisp Object System.
LISP and Symbolic Computation 1(3/4):227-244, January, 1989.

[Foxetal. 84] Fox, M.S.; Wright, J.M.; Adam, D.
Experiences with SRL: an analysis of a frame-based knowledge representation.
In First International Workshop on Expert Database Systems. 1984.

[Giuse 88] Giuse, D.A.
LISP as a rapid prototyping environment: the Chinese Tutor.
LISP and Symbolic Computarion 1(2):165-184, September, 1988.

[Giuse 89] Giuse, D.
Efficient Frame Systems.
Lecture Notes in Artificial Intelligence - EPIA 89.
In J.P. Martins and E.M. Morgado,
Springer-Verlag, Berlin, 1989, pages 39-50.

[Giuse 90} Giuse, D.A.
Efficient Knowledge Representation Systems.
Knowledge Engineering Review 5(1):35-50, 1990.

[Goldberg and Robson 83}
Goldberg, A.; Robson, D.
Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, MA, 1983,

[Lieberman 86] Lieberman, H.
Using Prototypical Objects to Implement Shared Behavior in Object Oricnted Systems.
Sigplan Notices 21(11):214-223, November, 1986,
ACM Conference on Object-Oriented Programming Systems Languages and
Applications: OOPSLA’86.

Efficient Objects and Constraints

(Myers 88) Brad A. Myers.
Creating User Interfaces by Demonstration.
Academic Press, Boston, 1988.

{Myers 89] Myers, B.A.; Vander Zanden, B.; Dannenberg, R.B.
Creating Graphical Interactive Application Objects by Demonstration.
In ACM SIGGRAPH Symposium on User Interface Software and Technology, pages
95-104. Proceedings UIST'89, Williamsburg, VA, Nov, 1989.

[Myers 90] Myers B.A., Giuse D.A., Dannenberg R.B., Vander Zanden B., Kosbie D.S., Pervin
E.C., Mickish A., Marchal P.
Gamet: Comprehensive Support for Graphical, Highly Interactive User Interfaces.
IEEE Computer 23(11):71-85, Nov, 1990.
Also appeared in Japanese in Nikkei Electronics, vol. 3-18 no. 522, 187-203.

[Myers 92] Brad A. Myers, Dario Giuse, and Brad Vander Zanden.
Declarative Object-Oriented Programming; How to Program in a Prototype-Instance
System Without Methods.
1992.
Submitted for Publication.

[Stroustrup 86] Stroustrup, B.
The C++ Programming Language.
Addison Wesley, 1986.

[Szekely and Myers 88]
Szekely, P.A. and Myers, B.A.
‘A User Interface Toolkit Based on Graphical Objects and Constraints.
Sigplan Notices 23(11):36-45, November, 1988.

(Tesler 81] Tesler, L.
The Smalltalk Environment.
BYTE 8:90-147, August, 1981,
[Tygar 87] J. D. Tygar and J. M. Wing.

Visual Specification of Security Constraints.
In /987 Workshop on Visual Languages, pages 288-301. Visual Language 87,
Linkoping, Sweden, Aug, 1987.

{Ungar and Smith 91]
Ungar, D.; Smith, R.B.
SELF: The Power of Simplicity.
Lisp and Symbolic Computation 4(3):187-205, July, 1991,

{Vander Zanden 89]
Vander Zanden, B.
Constraint Grammars-- A New Model for Specifying Graphical Applications.
In Human Factors in Computing Systems. pages 325-330. Proccedings SIGCHI' 89,
Austin, TX, April, 1989.

{Vander Zanden 91]
Vander Zanden, B.; Myers, B.A.; Giuse, D.A.; Szekely, P.
The Importance of Pointer Variables in Constraint Modcls.
In ACM SIGGRAPH Symposium on User Interface Software and Technology. pages
155-164. Proceedings UIST 91, Hilton Head, SC, Nov., 1991,

15.- Second Gamet Compendium

[Weinreb and Moon 81]
Weinreb, D. and Moon, D.
Lisp Machine Manual
Fourth Edition edition, Symbolics, Inc., Cambridge, MA, 1681.

{Wright and Fox 83]
M. Wright, M. Fox.
SRL: Schema Represemntation Language.
Technical Report, Carnegie-Mellon University, December, 1983.

[Young 89] Young, S.R.; Hauptmann, A.G.; Ward, W.H., Smith, ET.; Wemer, P.
High-level Knowledge Sources in Usable Speech Recognition Systems.
Communications of the ACM 32(2):183-194, February, 1989.

17 -

Second Garner Compendium

Reprinted from ACM Symposium on User Interface Software and Technology
Hilton Head, SC, Nov. 11-13, 1991, pp. 155-164

The Importance of Pointer Variables in Constraint Models

Brad Vander Zanden Brad A. Myers Pedro Szekaly
Dario Giuse
Computer Science Department School of Computer Science USC/Information Sciences [nstinute
University of Tennessee Carnegie Mzllon University 4676 Admiralty Way
Knoxville, TN 37996 Pittsburgh, PA 15213 Marina del Rey, CA 90292
bva@cs.utk edu brad.myers@cs.cmu.edu szekely@isi.edu
dzg@cs.cmu.edu
Abstract The advantage of the constraint model is that changed data

Jraphical tools are increasingly using constraints to specify
the graphical layout and behavior of many parts of an ap-
plication. Howevex, conventional coustraints directly en-
code the objects they reference, and thus casnot provide
support for the dynamic rentime creation and manipulation
of applicatiop objects. This paper discusses an extension t0
mwmﬂehmatmmmmmwm-
direcly reference objects. tbrough pointer variables.
Poigter variables permit programmers 10 create the con-
mmvﬂemofptwedmummoulmmng
languages. This procedural abstraction allows comstraiots
to model 2 wide array of dynamic application behavior,
simplifies the implementation of structured object and
demonstational systems, and improves the stocage and ef-
ficiency of highly interactive, graphical applications. It
also promotes a simpier, more effective style of program-
ming than cogventional coastraints. Constraints that use
pointer variables are powerful enough to allow a com-
prebensive user interface toolkit to be built for the first time
20 top of a constraint system.

Ksywords: Constraints, development tools, incremental al-
gorithms

1 Introduction

User interface 1oolkits, particularly graphical layout tools,
are increasingly adopting tbe constraint model of computa-
tion. The coanstraint model uses equations to denote
relationships between two or more objects. For example, a
designer might write tbe following equation to position a
circle 10 pixels to the night of a rectangle:

left = my-rect.right + 10
Permission to copy without fee ail or part of this maerial is
granted provided that the copies are not made or distributed for
direct commaercisl sdvantage, the ACM copynight notice snd the
utie of the publication end its date sppesr, and natice is given
that copying is 2y psrmission of the Associason for Computing
Machinery. To copy atherwise, or to republish, requires s fee
end/or specific perrussion.
® 1991 ACM 0-88791-451-1/91/0010/0185...41.%0

is automatically propagated to the appropriate places and
relationships are automatically maintained. Thus, if a user
drags the rectangle around the screen, a coosuraint solver
coatinuously resatisfies the above equation, causing the
circ!= 1o follow the rectangle around the display.

Having a coastraint solver automatically maiotain a set of
relationships is obviously advantageous, since it saves the
programmer from having to manually write code to ac-
complish the same task. However, conventiénal constraints
directly encode the objects they reference. For example,
ay-rect 18 hardcoded into the above constraint. Thus they
cannot support the dynamic ruotime creation of objects,
since e constraiots 10 the newly created objects will refer-
ence the wrong objects. These constraints also canpot
model any application behavior which involves objects that .
coutinuously change tbeir relationships to other abjects.
For example, a feedback object must highlight any item in
a menu, an arrow might point at different boxes io 2 boxes-
and-arrows editor, and a tuck switches streets as it
navigates through a city.

These shortcomings can be remedied by adding pointer
variables 10 constraints that allow objects to indirectly ref-
erence otber objects (these comstraints are called indirec:
reference consrraints). For example, the above constraint
could be rewritten as':

left ~ self.obdj-aver.right + 10
obj-over =« my-rect

where self refers to the object cootaining the variabie
left, in this case, the circle. By changing the value of the

"o improve readability, we are expressing constraints in conventional
nfix aotstion rather than Lisp's prefix notauon. in Garpet the construnt
would aconlly be written a3 (+ (gvl :obj-over :right)
10) where gv1 stmds for get value through fink. The . that goes
before varisble names is also dropped in the nowton used i this paper.

November 11-13, 1991

UIST91

155

Importance of Pointer Variabies in Constraints

-18

variable obj -over, the circle can be positioned to the right
of any object. With this extension, constraints can support
the runtime creation of objects and express the dynamic
behaviors that occur inside ar application window, as well
as the static layout refationships that occur around the ap-
plicatioa window.

Pointer variables allow the programmer to define the con-
straint equivalent ot‘pmcedu:u in traditiopal programmming
languages. direct references into indirect
references is akin t0 defining the parametcrs of a proce-
dure. The advantages of procedural abstraction are well
knmwmemlmmofptmw:bsmonm
constraint systems is still quite novel. Conswraint
procedural abstractions greatly simplify the implementation
of many interface features and enable the implementation
of new ooes that would have been uawieldy without
procedural abstraction:

s Feedback, in which objects. such as check-

marks or iaverted rectangles, may appear with

any item in a set of objects;

» Prototype-Instance models, in which instances

of constraints must be inherited from

prototypes and references must be adjusted so

thattheypomttothcmstznccmhathanthe

prototype;

¢ Programming by example, in wkich con-

straints that are demoastrated for example ob-
jects must be converted to general constraints
that work with any object;

e Abstract specification of layouts, in which
generic objects are laid out using coastraints,
and the specific widgets are filled in later,
based on such parameters as the availabilty of
screen space;

« Simulations, in which objects are frequently
constrained to pew and different abjects, for
example objects moving between the
machines og a factory floor.

Over the last couple years, we have gained considerable
experience using indirect reference comstraints in the Gar-
et project [11]). We have found tha: they are crucial for
implementiog the insides of application windows, which is
the hardest and most time-cousuming portion of an inter-
{ace to construct. 1o Garnet, constraints coasist of arbitrary
pieces of Lisp code and consequently, tkey are used to
specify more than just graphical layouts. For exampie, they
are used t0 cosmmunicate inforrnation between multiple
threads of a dialog. to compute the attribute values of ob-
jects, and to monitor the states of various objects. The
procedural abstraction provided by indirect reference con-
straints is so powerful that Garoet implements its toolkit on
top of the conmstraints {11}. No other constraint-based
toolkit does this.

Indirect reference constraiats also provide an enurely new
style of programming that seems much simpler and more
effective than conventional constraints. It will become ap-
parent how indirect reference constraints lead to far simpier
implementations as this paper describes maay of the impor-
tant applications of indirect reference constraints. This
paper will also discuss how indirect reference constraints
can enhance the performance of an application while
decyeasing its storage demands. Finally, various im-
plementation strategies for indirect reference constraints
will be discussed.

2 Related Work

While pointer variables are commonly incorporated in pro-
gramming languages, they bave only recently been incor-
porated in their full generality in coanstraint systems. A
restricted version of indirect reference constraints first ap-
peared in Coral [17}. Coral permitted a designer 10 provide
a list of objects that a constraint could reference. For ex-
ample, a designer could provide a list of menu itemns and a
feedback object would be able to appear over any of them.
However, Coral did not allow comstraints to reference ar-
bitrary objects through variables, and thus did not provide
the full generality of indirect reference constraints.

Thinglab [2] also provides a limited form of indirect refer-
ence constraints. Designers can construct pathnames that
allow a constraint to traverse a structure hierarchy to find
an object. If one of the components in the structure hierar-
chy changes, the new object will be automatcally
referenced by the cotistraint. However, arbitrary references
to objects through pointer variables are not supported. Pen-
guims {7] supports a model of indirect reference constraints
that is similar to the one described in this paper but it uses a
different constraint solving algorittm. Many other sys-
tems, such as Grow [1], Apogee [5], Peridot [9] and CON-
STRAINT {19}, allow constraints to directly reference ob-
jects but do aot allow indirect references.

Kaleidoscope supports a different type of
abstraction—coastraint abstraction rather than procedural
abstraction—in which procedures consist of a set of
parameterized coastraint statements and produce as output
a set of constraints instantiated with the parameters passed
to the procedure {3].

Finally, a number of researchers have developed models
that allow coostraints to have varnables, but not pointer
variables [16. 15, 8. 14]. For example. a programmer could
writt 3 coostraint such as feedbackposition =
iteml.position + offses, initially assign the value of 10 to
cffset, and later assign the valuc of 20 to offset.
However, a programmer could not write a constraint of the
form feedback.position = self.obj-over.position + offser,
where obj-over is a pointer vanable that points to an
arbitrary object.

Y
N

UIST 91

Hilton Head, South Carolina

19 -

Second Gamet Compendium

3 Applications of indirect Reference Constraints

Indirect reference constraints can be used 1o implement
many parts of an application that are difficult or infeasible
to implement with direct reference constraints. These in-
clude feedback, copying and instancing of composite ob-
Jjec1s with constraints in them, programming by example,
abstract specification of layouts, and simulations.

3.1 Feedback

Most direct manipulation interfaces provide feedback to the
userwhilepe:fauﬁnganopenﬁon.Forenmple.amc-
tangle may bighlight the itemn that the user is currestly
pointing at in 2 menu (Figure 1.2). While it is generally
impractical to handle feedback objects zmng direct refer-
ence constraints, they are easily handled using indirect ref-
erence coustraints. For example, the feedback object in
Figure 1.2 must be able to highlight any of the menu iterns,
but a direct reference constraint will only allow it to high-
light one of these items. In costrast, indirect reference
constraints allow the feedback object to reference any of
these menu items through a variable, such as obq-over. -
This techaique works equally well for feedback objects that
highlight a fixed set of objects, such as the objects in a
menu, or 2 dynamic sct of objects, such as the objects in a
drawing window (Figures 1.2 and 1.b).

(a) b)

Figure 1.

The rectangular feedback objcct in the menu and the
selection handles in the drawing cditor use constraints
10 center themselves over the seiected items and to
change their dimensions to the dimensions of the
selected item. By indirectly accessing a selected item
through the variable obj -over, the feedback objects
are able to appear both over any item in a static set of
objects, such as the menu items (s). or sny item in 2
dynamic set of objects, such as the abjects in the draw-
ing editor (b).

3.2 Structured Objects

Pointer variables simplify the integration of constraints into
a structured object system. A structured object coasists of
several parts, such as the labeled box in Figure 2, which
consists of a rectangle and a piece of text Typically these
parts are mutnally constrained. For example, the labei is
cenered inside the box and the size of the box depends on
the size of the label.

305

(a)

S

parent . Instance
2N
ﬂe Text
Instance

©

Figore 2.

Structured objects, such as this labeled box (a), are built
up from other objects, such as this rectangle and number
(b). Each objest maintains pointers to its parent and its
children, so that constraints can indirectly reference onc
another through pointers. This facilicates the copying
and instancing of objects. since the object system
simply sets the pointers in the new objects, and the
constraints automatically reference the appropriate ob-
Jects (¢).

Interactive applications need to make copies or instances of
these objects at runtime (e.g.. creating oew objects in a
drawing program, creating pew circuit elernents in a circuit
simulation program). These operations can be easily im-
plemented usig indirect reference coastraints. but are quite
difficult to implement in regular constraiot systems.

In an indirect reference constraint system, each object
maintains a pointer to its parent, and a sct of pointers to its

November 11-13, 1991

UIST 91

157

Importan.e of Pointer Variables in Consuaints

-20

childrea (Figure 2.b). Constraiats reference objects by fol-
lowing the appropriate pointers. For example, if the label’s
parent pointer is contained in the variable parent and the
labeled box keeps pointers to its children in the varables
label and box, then the label can be centered inside the
box using the following constraints:

center-x « salf.parent.box.center->
center-y = self.pareot.box.center-y

To create an instance of an object, the object system creates
instances of cach of the object’s components and sets the
pointer variables (Figure 2.c). The object system also
creates instances of cach of the coustraints in the
’s componeats and stores them in the appropriate
places in the new instance’s components. No changes are
needed 10 the constraint expression. The constraiots in the
newly created objects will automaticaily reference the ap-
propriate objects since they will follow the pointers in the
instance objects rather than in the prototype objects. For
example, the constraint that computes the value for
center-x in the label instance will {ollow the parent and
box pointers in the labeled box sgucture hierarchy and
retrieve the center-x value of the rectangle instance.

In a direct reference system, constraints must use
bardcoded references to objects. For example, the label in
Figure 2 could be centered inside the box using the follow-
ing direct reference constraints:

center-x = DOX.center-x
center-y « box.center-y

‘When 2 new instance of labeled-box is created, the object
system will have to replace all references to box with
references to the newly created instance of box.

The object system will have 1o track down the references
by manually traversing the prototype’s hierarchy to find
where box is in relation to label, (the relation is go to
label’s parent, which is labeied box, then to labeled box’s
first child, which is box), then use the same traversal in the
instance’s hierarchy to find the appropriate reference to the
newly created instance of box. Thus it is much simpler and
more efficient 1o implement copying and instancing opera-
tions in indirect reference systems than in direct reference
systems.

3.3 Programming by Example

Indirect reference constraints make it easier to implement
systems that employ demonstrational programming, such as
the graphical interactive design tool Lapidary (10]. In a
demonstrational systemn, a user draws an example picture or
demonstrates an example behavior, and then the system
creates a prototype object or behavior by generalizing the
picture or demonstrated bebavior. If the demonstrational
system uses indirect reference coastraints, thea it is easy to
generalize these examples. In fact, the example that the
user draws or demoanstrates is already a prototype, since the

object can be iostanced or copied using the scheme
described in the previous section.

In Figure 3, a designer is using Lapidary to create a boxes-
and-arrows editor. The designer has drawn an exampie
picture in which the arrows are attached to the center of the
boxes they connect. Lapidary represents the constraints of
the line internally as indirect reference constraints:

Knoxvills

~

™~

\@bﬂrsh

Figure 3.
An example picture demonstrating that the endpoiats of
an arow should be attached to the centers of the boxes
it connects. An interface builder will gencralize this
aTow into a prototype that can connect any pair of
boxes.

endptl = gelf.f{rom-obj.center
endpt2 « gelf.to-obj.canter
from-obj] = boxl

to-obj = box2

The designer can save this arrow and the application can
use it as a prototype. When the boxes-and-arrows editor
creates instances of this arrow, it stores pointers © the ap-
propriate boxes in the from-obj and to-obj variables,
and the constraints automatically attach the endpoints of
the arTow instance to the centers of the boxes. The applica-
tion does not need to know anything about the constraints,
structure, or graphics of the line. The constraints on the
endpoints could connect ceaters to centers, right sides to
left sides, or even use a complex formula that computes the
pearest sides and tries to avoid crossing other lines.

3.4 Abstract Specification of Layouts

Indirect reference constraints facilitate the specification of
layouts, independently of the objects to be layed out. For
example, a designer might want to specify that a genenc
feedback object should appear over a selected object. The
actual type of feedback used might depend oa the size of
the selected object and the type of the selected object. As
another example, Humanoid (18] and Jade [20] allow a
designer to define constraint-based rules that describe the
general layout of dialog boxes in terms of the generic parts

158

UIST 91

Hilton Head, South Carolina

3l

Second Garnet Compendium

of a dialog box, such as a title, a body that contains the
items of the dialog box, an OK button, and a cancel button.
Onpe can then apply the rules to different dialog boxes, ir-
respective of the widgets that fill the roles of the different
parts. For example, storing the following coastraint on the
x coordinate of the OK button will force the button to be
placed 10 pixels to the right of the dialog box's title,
regardless of which widget is used for the title or the OK
button:

left = self.parxent.title.right + 10

3.5 Simuiations

Simulations often require objects 10 move smoothly be-
tween various points of the display. For example, sort
animations show objects moving around in linked lists or
arrays, navigation systems move objects around transpor-
tation corridors, and manufacturing systems route objects
through the machines on a factory floor. Indirect reference
constraints model this motion by using variables to refer-
ence the beginning and target positions.

For exampie, suppose we want the carton in Figure 4 10
glide from station A to station B as if it were on a conveyor
belt. This could be done by writing a set of constraints that
interpolate the carton’s position based on a timer and the
stations’ positions:

=

(susem s |

{ sssions | (su-c]

@

[] omme)

)

[sucoms |

{ suadon € |

(©)

Figure 4,
An assembly line with stations connected by a conveyor
beit. A carton should be centered above the station that
is currently processing it (a), and cartons should move
smoothly from one station to the next, (b} and (c).

time = 0
x-distance = self.to-station.center-x

- salf.from-station.center-x
ceonter-x = self. from-statios.center-x
+ (self x-distance * self. time)
to-station - station-b
from-station = station-a

x-distance computes the distance between the old and
new statious, and center-x contains the current x position
of the carton. As the application program increments t ime
from 0 10 1, the carton moves smoothly between its old and
new assernbly station. To prepare for the next step of the
animation, the application resets the timer to 0, stores sta-
tion B in from-station, and stores a new station. C, in
to-station.

4 Performance and implementation Advantages of
Indirect Refarence Constraints

The generalization of constraints using pointer variables
can improve the efficiency of an application by reducing
the number of constraints and objects it uses, reducing the
size of the constraints it uses, and reducing the number of
coastraints that it must dynamically create and delete. In-
direct reference coastraints also make it easier for the con-
straint systern to maintain one rather than multiple copies
of a constraint and make it easier to staticaily compile the
constraints.

Storage improvements come in two forms. First, by allow-
ing objects to be constrained to many different objects, in-
direct reference constraints may significantly decrease the
number of objects which an applicatioa creates. For ex-
ample, suppose a feedback object should highlight the cur-
rently selected item in 2 menu, as in Figure 1.a If direct
reference constraints are the only coastraints available, the
designer may create a separate feedback object for each
menu item, since the constraints wil! bind each feedback
object to exactly one item. However, as aoted in Section
3.1, indirect reference constraints allow a feedback object
to highlight any menu item. and thus one feedback object
suffices. Secound, indirect reference constraints can be writ-
ten much more compactly and eiegantly than direct refer-
ence constraints. Returning to the feedback example, a
clever designer who is working with direct reference con.
straints might be able to use only one feedback object by
defining coastraints which reference every object in a menu
and describe bow the feedback object should bighlight each
menu item. For example, to implement the feedback object
in Figure 1.a, the designer might write the foilowing con-
straint to define the left side of the feedback object:

feedback.left = case month
’ *Januasy”: Jan.left
“February”: Feb.left

'Decanﬁéx;’: Dec.left
where month is a2 string variable containing the curmrently
selected moanth.
However, this solutivn bas four drawbacks:
e Non-modular :nd Inelegant: If the designer

November 11-13, 1991

UIST'91

159

Importance of Pointer Variables in Constraints

adds a new menu itern, the designer must also
remember to modify the constraints in the
feedback object.

e Space: The constraint must have twelve
separate coaditions and actions, which causes
the code 10 occupy a considerable amount of
space at runtime. Also, 12 dependency
pointers, oue for cach object, must be main-
tained by the constraint system.

« Efficiency: The constraint depends on all
twelve objects. If one object changes, even if
it is not the currently selected object, the con-
straint must be reevaluated.

¢ Dynamic Sets: This technique only works for
static sets of objects, since the objects must be
hardcoded in the constraint. It cannot be used
to describe dynamic sets of objects, such as
the objects in the drawing window in Figure
1.b.

indirect reference constraints suffer from nope of these dis-
advantages. The corresponding indirect reference con-
straiai would be:

feedback.left - self.obj-over.left
where obj-over is a pointer to the selecied menu itern,

This constraint is both compact and modular. The designer
can add or delete iterns from the menu without worrying
about the effect of the change on the feedback object. It
occupies less space than the corresponding direct reference
constraint and requires only two dependency pointers, one
0 the variable obj-over and ooe to the selected menu
ftem. It depends only on the obj-over variable and the
curreatly selected menu item, so it will only be reevaluated
when absolutely necessary. Finally, this type of constraint
can handle dynamic sets of objects. If additional items are
added to the menu, the constraint automatically deals with
them without having to be rewritten.

The efficiency advantage of indirect reference constraints
derives in part from their storage advantage. Fewer con-
straints means fewer coastraints to solve, and thus, less
work for an equation solver. For example, a constraint
solver that emyloys eager evaluation might take only one
fifth the time to set up the feedback for a five item menu
using iodirect reference constraints instead of direc. refer-
ence constraints, because there are only one fifth as many
constraints to solve.

Efficiency advantages also arise because 1) an object sys-
tern does not bave to locate and replace direct references;
and 2) fewer constraints have to be dynamically created
and destroyed. The search and repiace issue was discussed
in section 3.2. To illustrate the reduction in dynamically
created and destroyed constraiats, coasider the construction
of a2 menu using direct reference constraints. It may be

inpractical from a storage standpoint to maintain one f{eed-
back object for each item. Thus. the applicaton may main-
tin only one feedback object and destroy the old con-
straints and create gew coanstraints each tme the feedback
moves 10 a new ilem. Th= overbead involved in desuoyiog
and creating these coastraints can be avoided if indirect
reference constraints are used.

Indirect reference constraints also simplify tbe construction
of the constraint system. First, the formuia for 2o inairect
reference constraint can be stored in 2 prototype and in-
stances of the prototype can maintain pointers to this for-
mula. Thus, many instances of a prototype constraint can
be created, but the formula is created only once. Second,
the parameters to a constraint are implicidy declared by
pointer variables, so the constraint system can statically
compile constraints by wrapping a function beader around
them. This considerably simplifies implementing a con-
straint system in an existing general-purpose language. For
example, Garnet constraints can be arbitrary Lisp code.
Direct reference systems typically also maintain only one
copy of a constraint and statically compile it. However, to
accomplish this, they require the user to write the constraint
as a function, compléte with parameters denoting the direct
references, or else parse the constraint to determine the
direct references. However, we have discoversd that users
find it fritating and cumbersome to have to define
parameters for constraints. For example, it is much more
elegant and compact to write

feedback.left =~ self.obj-over.left
than to write .

constraint left-alige (obj) { obj.lefr]

feedback.left = left-align(self.obj-over)
Similarly, it can be quite difficuit to write a parser to search
through each constraint and locate the direct references.

5 implementation

The algorithms for implementing indirect reference coo-
straints build oa the algorithms for implementing direct ref-
erence constraints.

5.1 Lazy Evalustion

A variation of nullification/reevaluation algorithms can be
used to handle indirect reference constraints.
Nullification/reevaluation algorithms repicsent the con-
straints as a directed graph with nodes represeunting con-
straints, and edges (called dependencies) representine data
flowiag from one constraint to anotber (Figure 5.3). Nhen
the value of a node changes (typically a ‘leaf”” node such
as ¢ or), all nodes that directly or indirectly depend on this
changed node are marked out of date. When the value of 2
node is requested, the coanstraint that computes its value
starts demanding the values of other nodes on which it
depends. If these nodes are out of date, they will recur-
sively demand the values of the nodes they depend on. until
eventually nodes are reached whose values are up to date.
at which puint the constraints can compute their value and

160

UIST 91

Hilton Head, South Garolina

2.

Second Gamet Compendium

returs {13, 6], For example. s ppose that node ¢ is changed
in Figure 5. The lazy evaluator will mark the nodes b, 4,
and a as out of date (Figure 5.b). If the valve of node o is
then requested, g will demand the value of 4. d is out of
date so it demands the values of ¢ and f, both of which are
up W date, computes its ows value, marks itself up to date,
and returns its value t0 4. @ then demands e value of ¢
which is up 10 date, computes its own value, marks itself up
10 date, sod returns.

Nuilification/reevalmation algorithms were originally con-
strocted with the assumption that the edges in the graph
remain static while the coanstraint solver is evalmating the
graph. However indirect reference constraints can cause
the graph to dynamically change as the coastraints are be-
ing evaluated, because the pointer variables may change,
causing a constraint to access information from a different
set of nodes. For exampie, when the constraint oo node g
is being evaluated, it may stant refcrencing oode b rather
than node ¢ (Figare 5.¢).

To handle this situation, we have extended the algorithm so
that dependencies can be dyoamicaily created and deleted
as the constraints are being evaluated. Dependencies are
timestamped so that if they are oot used by a consticiitina
subsequent gvaluation, they become stale aud are dis-
carded. When a constraint demands 3 variable, the con-
straint solver either creates a pew depe. dency between the
constraint and the variable if such a dependency ad oot
already exist. or eise gpdates the time stamp on the depen-
dency so that it matches the timestamp oo the constraint (a
coastraint is tmestamped each time it is evaluated). The
constraint soiver removes stale dependencies as it in-
validates constaiots. Before following a dependescy, it
checks whether the 's timestarnp matches the
timestamp of the coastraint it poiats to. If the two times-
tamps disagree, the dependency is discarded. A beneficial
side effect of this scheme is that constrants which involve
conditionals depend only on the variables tnat make up the
condition and the branch of the condition that is exascuted.

Thus the gumber of dependency pointers 2nd unnecessary
evaluations are minimized.

To see that this scherne works, note that a constraint will
dynamically add or delete dependencies only if it contains
poiaters or coaditionals. If a constraint depends on pointer
variables, the constraint will be marked out of date when
the pointer variables change and the constraint will be
reevaluated whea its value is aext requested. At this point,
the constraint solver will add edges to this constraint from
the new set of nodes it references (Figure 5.c). The depen-
dencies to variables that are not requested by the constraint
on this evaluation will become stale and be removed the
next time these dependencies are cxamined. Thus the con-
straint will demand the values of the correct set of nodes
and will obtain the correct result.

In the case of a conditional, the branch or branches of the
conditional that were ignored during the previous evaina-

uos of the constraint will only have t0 be evaluated if the
condition itself clanges. Since the constrant depends oo
the vanables in this condition, it will be marked out of date
when one of these variables changes and will be automat-
cally reevaluated (of course it will also be teevainated of
one of the variables in the branch that was last executed is
changed). Again, the constraint solver will add depen-
deacy edges o this coastraint from the new set of vanables
it references ip whichever branch is executed and remove
edges that emanante from variables m the previowsly ex-
ecuted branch. Thus constraims with conditionals will al-
ways be evaiuated correctly.

52 Eager Evelustion

Our eager evaluation algorithun uses 2 vanation of an eager
evaluator developed by Roger Hoover 4], Like the lazy
evaluator, this algorithm makes use of dataflow graphs.
However, it assigns priorities to the nodes in the graph,
indicating the oodes relative position in topological order
(Figure 6.2). When 2 node changes vaine, all its immediate
successors are added to 2 prionity queve based on their
© v w3, When the evaluator starts executing, it remnoves
e lowest priority node from the quene and evaluates it
By evaluating the lowest priority node in the gqueue, the
evaluator ensures that the values of all nodes that the con-
straint associated with this node may request are up to date.

= e Hoover algorithm, the priorities are maintained in an
ordered list and each sode in the datafiow graph points ©
one of these priotities. Comparisons between priorities can
be performed in O(1) time and insertions of new priorities
can be accomplished in amortized O(1) time. When an
edge is added 10 a dataflow graph, the algorithm checks
whether the priority of the source node is greater than or
equal to the priority of the destination pode (data flows
from the soarce node to the destination node; for example ¢
is the source sode and k is the destination node for the edge
that connects these nodes). If the priorities are out of order,
the algorithm follows the saccessors of the destination node
transitively uotil it reaches nodes whose priority oumbers
are greater than the priority of the source node (the Hoover
algorithm will also follow predecessors of the soarce node;
however, 10 save space we do 00! maintain backpoioters
and tbus we cannot search backward from nodes). Tbese
nodes are termed boundary nodes. The algorithm works
back from these boundary nodes and assigns o the inter-
mediate nodes new priority qumbers that are between the
priority oumbers of the source and boundary nodes. If nt
runs out of existing priority numbers, it creates new ones
by inserting records ioto the ordered list directly after the
record associated with the priority aumber of the source
oode.

For example, sappose a dependency from node d 0 f is
added ip Figure 6.b. Node 4 has priority 2 while node f has
priority 1 so the nodes are out of order. The algorithm goes
10 node g, which bas a priority of 2, and then to node h,
which has a priority of 3. Since this is greater than pode d's

November 11-13, 1991

UIST 91

161

Importance of Pointer Variables in Constraints - 24

a) (b) ©
Figure §.

{a) Constraints are represented as nodes in s directed graph. The edges represent data computed by a constraint that another
constraint uses. (b} The gray nodes represent nodes marked out of date when node ¢ is changed. (c) Node a now depends on
node b rather than node ¢.

(a) (b} ©)

Figure 6.

(2) Numbers sre assigned 10 nodes according to the order in which they are evaluated. Nodes cannot be evaluated unt] all their
predecessors have been evaluated. Darkened nodes represent evalnased nodes. Nodes 4 and fare ready for evaluation. (b) Node f
now depends on node 4 as well as node . (c) Nodes fand g must be renumbered to make their priorities agree with their posidon
in twopological order.

priority, the search stops bere and node 4 becomes 2 bound- existing priorities, 30 it inserts a oew one in the ordered list

ary node. In this case there are is one priority, 2.5, between and assigns it 1o node f (Figure 6.c).

2 and 3 in the prionty list, so the algorithm assigns this

priority to node g.2 At this point the algorithm runs out of The Hoover algorithm assumes that dataflow graphs cannot

change once constraint evaluation begins, so the reordering

scheme and the evaluator can be invoked in sequence.
*We we using rational numbers foc illustrative purposes only. The However indirect reference constraints may cause the edges

aconl algorithm for mantaining the ordered list uses only integers ad of the graph to change during constraint evaluation. Thus

does some reordering o ensure that only integers are used.

183 : S Hilton Head, South Carolina

Second Gamet Compendium

ing; however this forward and backward searching may
reorder fewer nodes than our algorithm, thus offsetting the
log factor). Assuming there are n nodes in the graph, the
worst case running time of the algorithm is O(dn) where 4
is the number of dynamically added edges. As with most
incremental aigorithms, this worst case rumning time is mis-
eading, since most node evaluations do not Tigger a reor-
dering and most reorderings do oot visit all n nodes.
Indeed, results based on preliminsry testing of the algo-
rithm suggest that pointer variables typically do ooe of two
things: 1) they shift between nodes whose priority nurnbers
are identical, thus causing no reordering to occur; or 2) they
shift between 2 fixed set of nodes, and once they have
shifted o the highest number node, reordering never occurs
again. The former case arises frequentdy in simulations
where an object is typically moving between indepeadent
bot fairly similar objects that have roughly the sane oum-
ber of constraints and the latter case arises frequently in
menys where the last item has the coustraints with the
highest priority gumber (because it is the last item laid out).
Thus in practice, the algorithm appears to fairly rapidly
quiesce to 2 state where very few reorderings occur during
constraint evaluation.

Other Implementation issues

Each time a coastraint is evaluated, its value is cached so
that the next time the coastraint’s value is requested, the
constraint will not be reevaluated unless ooe of its
pararoeters has changed. Similarly the vaiues of paths can
be cached to improve efficiency. For example, in the
labeled box example preseated in Section 3.2, the label
accessed the position of the box using the path
(self.parent.box). The first time this path is
evaluared, the constraint solver can cache the resulting
pointer to the box, so that as long as the variables compris-
ing the path do not change, the constraint behaves as a
direct reference coastraint. The variables on this path still
maintain dependency pointers to the constraint. so that if
one of these variables changes, the path can be reevaluated
and a new value cached for it.

Another implementation issue that arises is what to do with
coastraints cootaining variables that are nil or which refer-
ence deleted objects. The two optious considered in Garnet
were 1) © destroy the constraint, keeping its previously
computed value; or 2) to keep the constraint and return its
previously computed vaive. Under option two, the cog-
straint would again be evaluated once all its vaniables point
at valid objects. We settled on the second option since, io
many cases, the coostraint will be used again. For ex-
ample, feedback objects that are invisible may have their
ob3-over variables set 1o nil, yet the coastraints should be
maintained so that they can correctly position the feedback
object ooce it is made visible and its obj-over variable is
set to a newly selected item.

6 Status and Future Work

Indirect reference counstraints have been compictely im-
plemented at 2 very low level in Ganet. Every layer in
Garnet is implemented on top of the coostraint sysiem
using indirect refe.*nce constraints, except for the lowest-
level untyped object systemn. This includes the graphical
object system, the handling of the ivput, and all the widget
libraries. In addition, Garnet bas approximately 150 users
who have used indirect reference constraints 10 generate
hundreds of applications.

Garnet carrently uses lazy evaluation and 2 modified vser-
controlled version of caching that evaluates a path the first
time the constraint is evaluated and then ignores i if the
user assures the constraint solver that the path will never
change. On 2 SUN ion 1+ ronning Locid Com-
mon Lisp, an indirect reference to an object through a vari-
able (eg., self.obj-over.left) requxes 170
microseconds. whereas a direct reference (eg..
nenu-iteml.laft) Or 2 reference that uses a cached path
requires 54 microseconds. If a3 constraint does oot have w0
be reevalnated, its previously compated value can be ac-
cessed in 19 microseconds, regardless of whether it is a
direct refereace or indirect reference constraiot Garnet's
coastraint solver can solve indirect refereoce constramnts
quickly enough © allow feedback objects to track the
mouse i real tite or W perform smooth, realtite anima-
tions, even in large, constramt-based applications. For ex-
ampie, the Lapidary interactive design teo! [10% consists of
16000 lines of Lisp code and 23500 constraints, all of
which are indirect reference constraints, and is fast enough
10 provide instantaneous feedback to the user.

We have a2 wurking version of an eager evaluator that we
believe is more efficient than the current lazy ¢valuator and
which should be implemented in Gamet in the near future.
We also have a design for two-way indirect reference con-
straint systems. Finally, we are exarmuning graphical means
of wacing these constraints so that designers can debug
them more easily [12).

November 11-13, 1991

UIST o1

163

of Pointer Variables in Constraints

- 26

7 Conclusions and Future Work

Indirect reference conswraints allow procedural abstraction
to be added to coastraint systems. This significantly ex-
tends the potential uses of constraints in interactive applica-
tions by allowing constraints to express the dynamic be-
havior that occurs inside an application’s window. These
coostraints can be used to specify animations and feedback
that operate over dynamic sets of objects, implement copy-
ing and instancing of structured objects in prototype-
instance systems, simplify the creation of prototype objects
from example objects in demonstrational systems, and
ghstractly specify layouts. In addition, their programming
style is simpler and more effective than conventional con-
straints, ey improve the efficiency of applicaticns, and
they decrease an application’s storage demands. Because
of their flexibility and ease of use, indirect reference con-
straints have permitted a2 comprehensive user interface
tooikit to be built for the first time oa top of a constraint
system. This represeots an important step toward the
development of a general-purpose, constraint-based, inter-
active programming language.

References

1. Paul Barth. "An Object-Oriented Approach to Graphi-
cal Interfaces”. ACM Transactions on Graphics 5, 2 (April
1986), 142-172

2. Alan Boming and Robert Duisberg. "Constraint-Based
Tools for Building User Interfaces”. ACM Transactions on
Graphics 5, 4 (Oct. 1986), 345-374

3. Bjom N. Freeman-Benson. Kaleidoscope: Mixing Ob-
jects, Constraints, and Imperative Programming,
OOPSLA/ECOOP'50 Conference Proceedings, 1990, pp.
T1-88.

4. R. Hoover. Incremenial Graph Evaluation. Ph.D. Th.,
Department of Computer Science, Cornell University,
Ithaca, NY, 1987.

5. Scott E. Hudson. Graphical Specification of Flexible
User Interface Displays. ACM SIGGRAPH Symposium
on User Interface Software and Techanology, Proceedings
UIST 89, Williamsburg, VA, Nov., 1989, pp. 105-114.

5. Scott E. Hudson. Incremental Attribute Evaluation: A
Flexible Algorithm for Lazy Update. Tech. Rept.
TR89-12. The University of Arizoaa, 1989.

7. Scott E. Hudson. An Enbanced Spreadsheet Model for
User Interface Specification. Tech. Rept. TR90-33, The
University of Arizona, 1990.

8. J. Jaffar and J. Lassez. Constraint Logic Programming.
Proceedings of the Principles of Programming Languages
Conference, ACM, Munich, Germany, Jan., 1987, pp.
111-119.

9. Brad A. Myers. Crearing User Irterfaces by
Demonsirarion. Academic Press, Boston, 1988.

10. Brad A. Myers, Brad Vaoder Zanden, and Roger

B. Dannenberg. Creating Graphical Interactive Applicauon
Objects by Demoastration. ACM SIGGRAPH Symposium
on User Interface Software and Technology, Proceedings
UIST 89, Williamsburg, VA, Nov., 1989, pp. 95-104.

11. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg.
Brad Vander Zanden, David S. Kosbie, Ed Pervin, Andrew
Mickish, and Philippe Marchal. "Comprehensive Support
for Graphical, Highly-Interactive User Interfaces: The Gar-
oet User Interface Development Eovironment”. /EEE
Computrer 23, 11 (Nov. 1950), 71-8S.

12. Brad A. Myers. Grapbical Techniques in a Spread-
sbeet for Specifying User loterfaces. Human Factors
Computing Systems, Proceedings SIGCHI 91, New Or-
leans, LA, April. 1991, pp. 243-249.

13. T. Reps. 7. Teitelbaum, and A. Demers. “locremental
Context-Dependent Analysis for Language-Based Editors".
ACM TOPLAS 5. 3 (July 1983), 449477,

14. V. A, Saraswat. Concurrent Constraint Programming
Languages. Ph.D. Th., School of Computer Science.
CMU, Pittsburgh, PA, 1989.

18. Guy L. Steele. Jr. The Deftnition and Implemeruation
of A Computer Programming Language based on
Constraints. Ph.D. Th., Department of Computer Science,
MIT, Boston, MA, 1980.

16. Ivan E. Sutheriand. SketwchPad: A Man-Machine
Graphical Communication System. AFIPS Spring Jowmnt
Computer Conference, 1963, pp. 329-346.

17. Pedro A_ Szekely and Brad A. Myers. "A User Inter-
face Toolkit Based on Graphical Objects and Constraints”’.
Sigplan Notices 23, 11 (Nov. 1988), 36-45. ACM Coan-
ference on Object-Oriented Programming: Systems Lan-
guages and Applications; OOPSLA '88.

18. Pedro Szekely. Template-Based Mapping of Applica-
tion Data to Interactive Displays. ACM SIGGRAPH Sym-
posium on User Interface Software and Technology,

Proceedings UIST 90, Soowbird, Utah, Oct., 1990, pp. 1-9.

19. Brad T. Vander Zanden. Coastraint Grammars—A
New Model! for Specifying Graphical Applications.
Humag Factors in Computiag Systems, Proceedings
SIGCHI'89, Austin, TX, Aprit, 1989, pp. 325-330.

20. Brad Vander Zanden and Brad A. Myers. Automatc.
Look-and-Feel Independent Dialog Creation for Graphical
User Interfaces. Humao Factors in Computing Systems,
Proceedings SIGCHI'90, Seattie, WA, Apnl. 1990, pp.
27-34.

164

Hilton Head, South Carolina

Second Garnet Compendium

Reprinted from Proceedings OOPSLA’92: ACM Conference on Object-Orienied
Programming Systems, Languages, and Applications. October 18-22, 1992.
Vancouver, BC, Canada. SIGPLAN Notices, vol. 27, no. 10. pp. 184-200.

DECLARATIVE PROGRAMMING IN A
PROTOTYPE-INSTANCE SYSTEM:
OBJECT-ORIENTED PROGRAMMING WITHOUT
WRITING METHODS

Brad A. Myers Dario A. Giuse Brad Vander Zanden
School of Computer Science School of Computer Science Computer Science Department
Camegie Melion University Camegie Mellon University University of Tennessee
5000 Forbes Avenue 5000 Forbes Avenue 107 Ayres Hall
Pintsburgh, PA 15213 Pittsburgh, PA 15213 Knoxville, TN 37996-.301
bam@cs.cmu.edu dzg@cs.cmu.edu bvz@cs.utk edu
ABSTRACT 1. Introduction

Most programming in the Gamet system uses a
declarative style that eliminates the need 0 write new
methods. One implication is that the interface to ob-
jects is typically through their data values. This con-
trasts significantly with other object systems where
writing methods is the central mechanism of program-
ming. Four features are combined in a unique way in
Garnet 10 make this possible: the use of a prototype-
instance object system with strucrural inheritance, a
reained-object model where most objects persist, the
use of constraints to tie the objects wgether, and a
new input modcl that makes writing event handlers
unnecessary. The result is that code is easier 1o write
for programmers, and alsc easier for tools, such as in-
teractive, direct manipulation interface builders, t0
generate.

KEYWORDS: Object-Oriented Programming,
Prototype-Instance Model, Toolkits, Declarative Pro-
gramming, Constraints, Input, Gamet.

Parmission to capy without fee aif of part of this maternal is
granted pravided that the copies ars not made or distnbuted for
diect commarcial sdventage, the ACM copyright notice snd the
title of the publication and its date sppeer, and notice 18 givan
that copying is by permission of the A for Computing
Machinety. To copy otherwise, of 10 republish, requires » fee
and/or specific pqm\'inion.

® 1992 ACM 0-89791-539-9/92/0010/0184...51.50

Over the last three years of using the Gamet system to
create dozens of large-scale user intesfaces, we have
observed that the style of programming in Gamet is
quite different from that in conventional object-
oriented systems. In Gamet, programmers combine
pre-defined objects into coilections, use constraints to
define the relationships among them, and then attach
pre-defined ‘*Interactor’’ objects 1o cause the objects
1o respond to input. The result is a declarative style of
programming where the programmer rarely writes
methods. Furthermore, the interface to objects is
usually through direct accessing and sefting of dawa
values, rather than through methods.

The features of the Gamet object system have been
motivated by the overall goai of the project o
provide high-level, interactive, mouse-based toois for
rapidly prototyping and creating graphical, highly-
interactive, direct manipulation programs. Because of
the emphasis on rapid creation and easy editing, we
have chosen 10 make the object system completely
flexible and dynamic. Since the interactive 1o0ls need
1o be able 10 generate code for the interface and then
read the code for later editing, it is easier (0 gencrate
high-level, declarative specifications. Becausc much
of the look and the dynamic behavior in Gamcet can be
specified by supplying parameters to pre-defined ob-
jects, it is easier for interactive tools o display these
options in dialog boxes or intelligendy guess them
using demonstrational techniques.

OOPSLA'Y2, pp. 184-200

- 28

Declarative Programming in a Prototype-Instance System

In order to achieve these goals, we have made a num-
ber of interesting design decisions which conrribute to
Gamet’s unique programming style. First, Gamet
uses a prototype-instance model rather than the more
popular class-instance model. In a prototype-instance
model, there is no distinction between instances and
classes; any instance can serve as a ‘‘prototype’” for
other instances. Gamet’s model is unique in that it
supports structural-inheritance. This means that when
a prototype object is a collection (or *‘aggregate’') of
other objects, Gamet creates instances of all com-
ponents when the aggregate is instanced. Therefore,
the programmer can construct complex graphical ob-
jects by declaratively listing the primitive component
objects. It is not necessary to write creation or draw-
ing methods.

Second, the objects in Gamet are usually persistent
and long-term. For example, the graphics model re-
quires that there be an object in memory correspond-
ing 10 each object on the screen. This means that the
programmer does not have to deal with object refresh,
and allows the toolkit to contain high-level support,
like selection handles. In many other systems, a
single object can be used like a stamp-pad and drawn
in multiple places on the screen.

Third, constraints can be used to declare the relation-
ships among the objects. Constraints in Gamnet are
lightly integrated with the object system, so that any
slot of any object can have a constraint which cal-
culates its value. The result is that the interface 10
objects is usually through data values which are
directly accessed and set, rather than through
methods. Constraints «c used to propagate the
changes appropriately.

Fourth, Gamet incorporates a novel input model,
which provides standard objects called **Interactors'"
to handle the most popular direct manipulation be-
haviors. This is based on the Model-View-Controller
idea from Smalltalk {8], where the Interactors cor-
respond to the controllers. In Gamet, however, unlike
in Smalltalk and other implementations of this idea,
the programmer rarely writes new Interactor methods.
Instead, the programmer attaches an instance of a pre-
existing Interactor object to the graphical objects
using constraints, and declaratively specifies any
necessary controlling parameters for the Interactor.

185

This paper discusses these aspects of Gamet, and
shows the advantages of the Gamet style of program-
ming. Even though conventional wisdom for object-
oricnted programming is that writing methods is
**good’’ and exposing the objects’ data is "‘bad,”’ we
show that the Gamet style is just as modular and
provides just as much information hiding. Further-
more, there is some evidence that, at least for user
interface programming, it is more ¢ffective.

Gamet is a comprehensive user interface development
environment in Lisp for X/11.1 It is in the public
domain and is freely available. Currently, over 30
projects around the world are using the system
regularly.2 The system contains a number of features
that make it well-suited for creating graphical user in-
terfaces. Unlike other toolkits which primarily supply
widgets, Gamet is specifically designed to cover ail
aspects of user interface programming, especially the
insides of application windows. While there have
been a number of papers about Garnet [17] and its
components (23, 15, 24, 19], this is the first paper
about the programming szyle. For a complete discus-
sion of programming in Garnet, see the reference
manual [20].

2. Related Work

In the terms of the ‘*Treaty of Odando'’ [22], the
Gamet object system is a prototype-instance model
with dynamic, implicit, per-object sharing. It is
dynamic because the inheritance can be changed at
any time, implicit because objects inherit from their
prototypes and you cannot explicidy declare how
slots are inheritcd (cxcept by using constraints), and
per-object because there is no such thing as classes.
The *‘templates’” (prototypes) arc entirely ‘‘non-
strict,”* which means that an instance can gain or lose
slots at any time. These features make Gamet much
like SELF (5] and other prototype-instance systems
(9]. However, unlike SELF, Gamet rarely uses mul-
tiple inheritance (aithough it is allowed), and we have
integrated a constraint solving mechanism with the

IDisplay Postscript and Macintosh versions are in progress.

You can get Gamet by anonymous FTP from
a.9p.cs.cmu.edu. Change to the directory
/usr/qgarnet/qgarnet/ (note the double garnet's) and
rewrieve README for instructions. Or you can send elecwonic
mail 0 gqarnecdcs . cmu . edu.

Second Gamet Compendium

object system. Another imponant difference is that
Gamet encourages programmers 0 direcly access
and set siots of objects, whereas SELF prevents this
and only provides methods.

Many systems have used constraints as part of an ob-
ject system {3], but none is as general-purpose or
fully-integrated as Gamet. Gamnet is also the first sys-
tem to introduce pointer variables into constraints
(where the objects referenced by the constraint can
change). The first integrated constraint and object
system was ThingLab {2}, which supported multi-way
constraints. ThinglLab was also a prototype-instance
object system. Apogee [7] and Grow [1] are more
closely related to Gamet in goals, since they are user
interface toolkits. Also, like Garnet, they implement
one-way constraints. Neither, however, uses con-
straints as the primary mechanism for information
passing, so they both make extensive use of methods.

As was mentioned, Gamet's input model is based on
the Model-View-Controller idea frorm Smalltalk [8].
Other attempts to capture interactive behaviors in-
clude the model used by graphics standards, such as
PHIGS, GKS, CGl, CORE, etc., which identifies five
or six basic input types (¢.g., locator, stroke, valuator,
choice, pick and string for PHIGS). This is based on
a model by Foley and Wallace (6]. Unfortunately,
this model has proven unusable for modem user inter-
faces [12].

The current object and constraint system is a complete
redesign and rewrite of the Coral system {23]. Coral
was implemented in CLOS, but was abandoned be-
cause it was too slow and inflexibie in practice. Like
Gamet, Coral provided a declarative syntax for ob-
jects and constraints, but it was not possible to modify
objects once they had been created. Coral used a con-
ventional class-instance model, rather than the
prototype-instance model we now use. [t also re-
quired that the constraints be parsed to search for ob-
ject references, which limited the kinds of constrainis
that could be written. The current Gamet constraint
sysiem does not need 10 parse constraints because it
dynamically determines the dependencies when the
constraint is evaluated. Coral did not provide for ar-
birary pointer variables in constraints like Gamet
does now, and it used active values, which we have
found to be unnecessary in Gamet with fully func-

186

tional constraints. Coral had a special-purpose
mechanism for constraints over lists of objects, such
as the items of a menu. For exampie, you could
specify a constraint for the top of the first item and a
different constraint for the rest of the items. This is
not needed in Gamet due to the support for arbitrary
code in constraints (you can just use Lisp’s looping .
facilities). The create routines in Coral were specific
to each class, rather than a generic funcion that
would work for all classes. Other important problems
with Coral were that the declarative technique did not
support changing objects after they were created, and
it was not availabie o interactive editors. Therefore,
a separate procedural mechanism was supplied. In the
current Gamct, the declarative and procedural
mechanisms have equivalent power.

3. The Prototype-Instance Object
Model

The Gamet object system implements the prototype-
instance model {9}, and supports completely dynamic
redefinition of prototypes with automatic change
propagation. There is no distinction between in-
stances and classes; any instance can serve as a
‘‘prototype’ for other instances. All data and
methods are stored in ‘‘slots’* (sometimes called
*‘fields’” or ‘‘instance variables’’). An instance can
add any number of new slots, and slots that are not
overridden in an instance inherit the values from its
prototype. In fact, the inheritance can change
dynamically, as an object can add or remove slots at
any time. There is no distinction between data and
method slots. Any slot can hold any type of value,
and in Common Lisp. a function is just a type of
value. This allows the methods that implement mes-
sages to change dynamically, which is not possible in
conventional object sysiems like Smalltalk. The
ability to dynamically add, delete, and modify
methods has proven important in graphical interface
builders since they need to temporarily insert their
own methods during *‘build’’ mode, and then retract
them during *‘test’” mode.

All objects are created with the standard function
create-instance which takes an optional name
of the new object, an optional object to be used as a
prototype. and a list of slots and values that should
have local values. Slots that are not mentioned start
out using the inherited, default value from the

- 30

Declarative Programming in a Prototype-Instance System

prototype (which can be changed later). Slot names
start with colons, and can contain any number of
printable characters (e.g., :left, :interim-
selected, :obj-over). In the following ex-
ample, the rectangle named my~rect will inherit the
:top, :width, and :height from the prototype
rectangle: '

; é7eata an object named reciangls inkeriting from aothing.
(create~instance °rectangle NIL
(:top 10) (:leftc 10) ;specify values for some sioes.
(:width 20) (:height 25) (:coler black))

.

;m. my-rect inkerizing from reciangle.
(create-instance ‘my-rsct rectangle
{:left 45) (:color blue)) ;owerride rwo slos.

Setting an object’s slot with a value automatically
creates the slot, if needed. This makes it extremely
easy to associate any piece of information with any
object, since slot names do not have 1o be predefined.
For example, the following will create a new slot in

rectangle:
{s-value rectangle :perimeter 90)

Because my~-rect inherits from rectangle, it will
also now have the new slot.

There is a special kind of object in Gamet cailed an

‘*aggregate’’ which is a collection of other objects. A
unique feature of Gamet is that whenever an instance
is made of an aggregate, Gamet automaticaily creaies
instances of all its components, and links them
together appropriately. This “*structural inheritance™
is an extremely powerful abstraction, because it frees
the user from having to know whether an object being
instanced is a primitive object like rectangle or a
composite like but ton; the create-instance call is the
same.

For example, a button might be composed of three
rectangles and a text object. The programmer can
declaratively list these as part of a button, as shown in
Figure 1. Then, when the user creates my-buttonl
using but ton as the prototype, Gamet automatically
creates instances of the three rectangles and the text.
Of course, any of the parts could themscives be ag-
gregates, and the instancing would be applied recur-
sively. Constraints (described below) are used to
declare how the properties of the components are con-
necled.

An important innovation in Gamet is that edits made
10 the prototype are automatically reflected in all in-
stances. For example, if the color of £il11-inside

(a)
{Create~instance ‘button aggregate
(:pacts
{{:top-edge rectangle ,...) ; while left & top edges
(:bottom~-edge rectangle ...} deckngh & botiom
(:fill-inside rectangle ...) ;greymerwr
{:label text . ; 3tring iside buston

{:string “Label”})))}

(create-instancs
t:left 100) (:
{create~-instance
(:lefe 100)¢:
(create-instance
{:left 100) (:

‘my~buttonl button

top S)(:string "Firsc”))
'my-buttong button

top 35) (:string “Second®)]
‘my~-buttonl buttoen

top 65) {:string "Third*))

TS
Figure 1:

(a) A bunton (shown on the left) and some instances created

from it. (b) The oudine of the button's aggregate structure

and the code to create the instances.

were changed in button, it would automatically also
change in my-buttonl and all the other instances
(see Figure 2). More significantly, if a part is added
or removed from the prototype, then Gamet will add
or remove the corresponding object from all in-
stances. For example if top-edge was removed

from button, then the appropriate rectangle would

187

also be removed from my-buttonl and the other
instances. Gamet stores pointers in each prototype 10
all instances to support these operations.

Similarly, if the programmer wants to create an object
which is a slight modification of an existing object, it
is only necessary to override the divergent parts. For
example, the programmer could have left the existing
button prototype of Figure 1 unmodified, and
created 2 new type of button that looks like Figure 2
by specifying:

(create-inscance ‘new-button button
{:parts
{{:top-edge :omit) ;dom't wan: the top-edge reciangie.
{:fill-inside :modify
;Just change the filling-styla property.
(:filling-style light-gray))
; ; :battom-edge and :label are unchanged.
}

Second Gamet Compendium

31

Figure 2:
Whea the color of the £i11-inside rectangle is changed
to light-gray and the t op~edge rectangle is removed from
the buston prototype in Figure 1, these changes propagate
apomatically o the instances.

In a conventional object system, the programmer
would instead be required 1o rewrite the entire draw
method (and probably the erase and many other
methods as well). In Gamet, only the specific pants to
be changed need 10 be mentioned, and only in the ob-
ject definidion. -

A very significant advantage of this technique is that
it is possible to provide graphical, interactive tools
that will create the graphical objects. For example,
Lapidary {15) allows programmers 1o draw pictures of
new widgets (like the buttons above) and of new
application-specific prototypes. The interface of
Lapidary is much like a conventional drawing
program like MacDraw. The programmer can specify
which slots will be parameters (for the button, they
might be the position and string). Interactive be-
haviors and relationships among the components can
also be defined. Because all objects have the same
structure, Gamet provides a built-in routine that will
save the objects to a file [21]. The contents of the file
is simply the declarative code 10 creaie the objects, as
in Figure 1-b. Therefore, this file can be compiled
using the standard Lisp compiler, and the standard
Lisp lcad routine is all that is needed o read in the
objects.

Therefore, Lapidary can simply call the standard save
routine to write the created objects 1o a file, instead of
having 0 generate code for the methods to create,
draw, and erase the objects, and for handling input
events. When the application wants these graphical
objects to appear at run-time, it only needs to load the
file, and create instances of the prowotypes supplying

the appropriate parameters. Note that unlike other in-
teractive interface builders, such as the NeXT Inter-
face Builder, Lapidary allows the designer 10 define
entirely new objects, not just choose pre-defined ob-
jects from a palette. The various features of Gamet’s
object system make this much easier to implement
[21). °

Since edits to 2 prototype are reflected in its instances,
it is even possible 10 interactively change the ap-
pearance of objects while they are being used in an
application. When Lapidary or a similar tool changes
the prototype. all of the instances are updated im-
mediately, even if they appear inside of an application
that is currently running. This helps achieve the goal
of making Gamet uszful for rapid prototyping of in-
terfaces, since the designer can see the results of the
edits in context. In a class-instance mode] or any
method-based object system, it would usually be
necessary to stop and recompile to see the results of
edits.

One claimed disadvantage of the prototype-instance
model is speed, since every slot access and setting
might require a search up the inheritance hierarchy to
find the slot. However, through implementation tech-
niques such as caching, we have significantly im-
proved the performance of Gamet. Thus, even though
Gamet otfers dynamic inheritance, constrainis, and
automatic constraint elimination (explained below), it
only takes 17.9 microseconds to access a slot (on a
SPARCSuation 1, using Allegro Common Lisp
v4.0.1).

4. Retained Objects

Another impontant feature of Garnet’s object system
is that most objects are “‘long-term.”* Unlike other
object systems, it is rare in Gamet to repeatedly al-
locate and dispose of objects. Most objects are used
1o represent application information, graphical dis-
plays, or interactive behaviors which persist.

For example, all graphics use a ‘‘retained-object
model”’ (sometimes called ‘‘structured graphics®’ ora
‘‘display list’’). This means that for every graphical
object on the screcn, there is a comresponding object in
memory. Therefore, to make something appear on the
screen, the programmer creates instances of graphical
objects and adds them 0 a window. A significant

188

Declarative Programming in a Prototype-Instance Sysiem

- 32

difference from other systems that supply structured
graphics, such as CLIM [11] and InterViews [10] is
that there is no way to avoid using the structured
graphics in Gamet: all graphics must be displayed by
anaching instances of objects to windows.

As an example, to display my-buttonl or
_my-rect, the programmer can create an instance of
a window and add these objects:
{cteate-instance ‘'my-window window)
(add-components my~window my-buttonl my-zect)

This will cause the objects to be displayed.
Prototypes can also be displayed, since there is no dis-
tinction between prototypes and instances. Therefore,
the button that says ‘*Label”* in Figure 1 is the actual
prototype for the instances.

In a similar way, Interactor objects which control be-
haviors (described below) are also allocated and at-
tached to graphics. Furthermore, the data that
describe the information and state of the application

are often stored as Gamnet objects. Thus, our tech-.

niques are not just limited to the graphical user inter-
face pant of the application.

In order to change any property of an object, it is only
necessary to set the appropriate slot, and Gamet will
propagate the change appropriately. For example, to
change the sting of my~buttonal, you could use:
(s-value my-buttonl :string “New Label")

This is implemented using a special demon procedure
that can be associated with each object. This demon
will be called whenever any slots of the object
change. For graphical objects in Gamet, a built-in
demon is used which automancally insures that the
appropriate graphical objects on the screen are
redrawn. The graphical update algorithm attempts to
minimize the number of objects that are redrawn by
first determining all objects that change and all ob-
jects that intersect them, and then drawing only those
objects (from back to front) using an appropriate clip-
ping region. A different demon is used for Interactor
objects, and applications can supply their own
demons for application-specific objects, if necessary.

The advantage of the retained-object model is that
programmers are freed from many of the maintenance
tasks they would have in most other systems. There
is never a need to write or call create, in-
itialize, draw, or erase methods. When a

complex application-specific graphical object is
desired, the programmer uses the declarative syntax to
list all the component parts, and then creates instances
and adds them to the appropriate window. Of course,
the prototypes themselves can also be created
dynamically at run tme. When objects are to be
changed, Garnet automatically determines what must
be redrawn. Using the same mechanism, Garnet
handles window scrolling and refresh automatically.

Of course, the primigve graphical objects, such as
rectangles, lines and text, use draw methods intemally
to dispi:zy themselves on the screen. Other internal
methods are used for handling refresh and for asking
objects whether they are under the mouse. However,
since Gamet supplies a primitive object for each kind
of drawing operation in the X Window System, any-
thing that can be drawn in X can be created by com-
bining instances of Gamet’s graphical objects. There-
fore, the programmer can simply combine the built-in
graphical objects, and never needs to write new
methods.

Another important advantage of the retzined model is
that the toolkit can provide built-in utlites for many
of the common functions, since all data uses a stan-
dard structure. For example, Gamet provides a
widget which displays the popular square ‘‘handles’”
around graphical objects for selection, moving, and
growing them. This works because the handles can
reference the retained graphical objects to know what
is on the screen, and how to modify them. Similady,
there are built-in routines for creating, duplicating,
deleting, moving, growing, and printing objects.
Thus, applicadon developers do not need 10 write
code for any of this.

The piimary problem with the retained object model
is the potental for enormous space inefficiencies. If
there are 10,000 objects on the screen, there must be
10,000 objects in memory to represent them. We
have taken a number of steps to overcome this
problem. As with the Glyphs in InterViews [4], we
remove unneeded information from objects. For ex-
ample, we can remove large numbers of unnecessary
constraints (see below). However, unlike Glyphs.,
each object in Gamet still keeps information about
where it is located on the screen. Second, if there are
a large number of nearly identical objects, such as the

189

33.

Second Gamet Compendium

squares in a bitmap editor (‘‘fat bits’"), the lines in a

map or mesh (Figure 3), or the dots in 2 graph, then a
“‘virtual aggregate’’ can be used that just pretends 10
create an object for each graphic. The programmer
provides a prototype object, and the viral aggregate
simulates crearing an instance for each data value, but
acwally does not allocate any objects in memor *. It
still appears 10 the rest of the code, howeve that

. there is an object for each value. Using these wch-

niques, people have created quite large applications
using Gamet.

RS>
ot -
NSNS N
” f_-_::f;’:amﬁﬁ

e e

.Y
Gy e Y]

1

=

Figure 3:

A mesh created using a virmal aggregate for the polygons
and another virual aggregate for the square knobs. For the
polygons, the virtual aggregaw is passed a prototype for a
polygon, and an amray containing the list of points and the
color for each polygon. The virtual aggregate then pretends
10 allocate an object for each clement of the array, but
acumlly just draws the prototype object repeatedly. (Pic-
wre counesy of Kenneth Meluner of General Electric
[13})

5. Constraints

An important feature of Garmnet is that any slot of any
object can contain a constraint insiead of a normal
value. A constraint is a relationship that is declared
once and then maintained automatically by the sys-
tem. For example, instead of making one endpoint of
a line be (10.45), a programmer can define it to be the
same as the center of the left edge of a rectangle.
Then the system will change the value of the endpoint
automatically whenever the rectangle maves. The
symax for referencing slots of objects in Gamet is

190

(gv object slot), where gv stands for ‘‘get-
value.”

Although many other research systems have provided
constrainis, Gamet is the first (o truly integrate them
with the object system and to make them general pur-
pose. Constraints in Gamet can be any Lisp expres-
sion. An important result of these design decisions is
that constraints are used throughout the system in
many different ways. For example, Gamet’s im-
plementation of a Motif radio button widget uses 58
constraints intemally, and the Lapidary graphical
editor, which is a large and complex application, con-
tains 16,700 constraints. Of course, many of these are
only evaluated once, and may be eliminated, as will
be discussed later.

Since they can contain arbitrary code, constraints
might be thought to be !ike methods, and. in fact, they
serve a similar purpose: 1o define the operation of ob-
jects. However, the important point is that program-
ming with constraints is a different style than pro-
gramming with methods, in the same way that pro-
gramming with methods is a different style than con-
ventional procedural programming. For one thing,
constraints are automnartically evaluated when neces-
sary, rather than requiring the programmer to invoke
them at appropriate times. Secondly, constraints are
declarative, in that they compute the values of vari-
ables (slots) based on values of other variables, and
do not have side effects. Finally, by focusing on data
values, constraints make programming more data
oriented, rather than procedure oriented. Secdon §
discusses why constraints provide more information
hiding than conventional methods.

One obvious use of constraints is 1o te pans of com-
posite objects together. When the programmer col-
lects together a set of objects to make a composite, it
is necessary to specify how the parns relate. Gamet
provides a declarative syntax so the programmer can
simply list the reladonships of the pans. An innova-
tion of the Gamet constraint sysiem is that the objects
can be referenced through pointer variables {25). This
is used to0 allow the code of the constraint 10 be inde-
pendent of the specific objects used for the pans. In-
stead, the constraint will reference the object using a
‘‘path’’ through the aggregate hierarchy. For ex-
ample, in the button of Figure 1, the bottom-edge

Declarative Programming in a Prototype-Instance System

rectangle can refer 10 the width of the texi object
using: :
{gv :SELF :parent :label :width)
As shown in Figure 4-a, this starts from the
bottom~edge rectangle, goes up to the parent ag-
gregate, down to the label part, and gets the
:width from there. Thus, the width of the
- bottom-edge will be the same as the width of the
label. This will work in the prototype, as well as in
all instances, since Gamet sets pointers to the ap-
propriate objects into the slots :parent, :£ill-
inside, :bottom~edge, ctc. This makes it easy
for Garnet to create instances of the entire aggregate
(including the constraints), since Gamet does not need
10 edit the constrairi code. Because this style of con-
straint is quite common, we provide an abbreviation
of (gv :SELF) as gvl. Figure 4-b shows the con-
straints used to tie together the parts of the button of

Figure 1.

These constraints are fairly simple, and are repre-
-sentative of the majority of the constraints used in
Gamet. However, some objects have quite long and
complex constraints. For example, the aggregraph
object is a special type of aggregate that displays its
components as a tree or graph, and it has a very large
constraint that computes the graph layout information.

Another important use of constraints is to copy values
and parameters around. For example, the Motif but-
ton prototype takes the string label, the color, and the
position as parameters (among others). These
parameters are supplied as values in the slots of the
top-level widget aggregate. When the object is
created, the programmer can specify whichever slots
need different values and the mest are inherited. Of
course, any value can be changed later whiie the
widget is displayed, if desired. Note that this is quite
different from a conventional system that requires the
widget creation method to take a large parameter list
with all possible values to be set, and thercfore re-
quires a custom creation method for each object. In
Gamet, the standard cxeate-instance routine is
used for all objects, and it can be used to set an ar-
bitrary number of siots.

Although the slots which serve as parameters are in
the op-level button aggregate, for these values to ac-
tually take effect they must be copicd down to the

191

{Imasa-elys

l Wﬁ.wl lw-w-

(a)

=

(create~instance ‘button aggregate

{:lefe 20) ; Thass are the
{:top 20) ; paramasters lo
(:string “label™) ; the button.
{:pazts

({:top-edge rectangle
(:lefc (formula (gvi
t:top (formula (gvl :pazent
(:wideh (formula

(+ (gvl :pacent
(:height (formula
(+ (gvl :pazent :label :heighc) 8)1})
(:color white))
{:bottomedge rectangle
(:left (fermula (+ 2 (gvl :parentc
(:cop (formula (+ 2 (gvl :parent
(;wideh (formula
{(+ 6§ (gvl :parent :label :width)))}!}
(:height (formula
(+ & (gvl :parent
(:color black))
{:fill~inside rectangle
{(:left (formula
(gvl :parent
(;top (formula
(gvl :pazent
(swidth (formula
(= (gvl :parent
(:height (formula
{~ (gvl :parent
(:color gray})
(:label vext
(:left (formula
,{center~x (gvl :parent
{:top (formula
{(center-y (gvl :parent
{:string (formula (gvl :parent

®)

Figure 4:
(a) The structure of the objects in the bution of Figure 1
showing the references. (b) The complets code used 0
produce the button. This shows the constraints which put
the graphics in the correct places and copy the parameter
values 1o the parts.

iparent :left}))
ttep)))

:label :width) 8)))

ilefr)))
1tepiidl

:label :height}}})
tbottom-edge :left)))
:bottom-edge :topll}

:bc:tonégdqa swidth) 2)))

:bottom-edge :height) 2)})

:fill~inside))))

:fill-~inside)))’
tsering) i)

appropriate places in the components. For example,
the string value is specified at the top level in Figures
1 and 4-b, but it is needed by the text object So there
is a constraint in the text object that copies the value
of the parameter. Of course, since constraints can be
arbitrary Lisp code, the values can be ransformed ar-
bitrarily as needed. Since constraints are used to

35

Second Garnet Compendium

propagate the values, the objects do not have 10 do
anything special to allow changes at run-time: if one
of the parameter slots is changed, the constraints
automatically propagate the change appropriately, and
the update algorithm will make sure the object is then
redrawn.

An interesting observation about this use of con-
straints is that it allows arbitrary delegation of values,
not just from prototypes. Any slot can get its value
from any siot of any other object through constraints.
Therefore, the constraints can be used as a form of
inheritance. Of course, constraints are more powerful
than conventional inheritance since they can perform
arbitrary transformations on the values.

As with the graphical objects themselves, constraints
can be defined interactively using various editors.
Lapidary provides some iconic menus for defining the
most popular constraints (Figure 5). We have found
that these are sufficient for most graphical applica-
tions. For more complex constraints, a spreadsheer-
like interface, which is called C32, provides a number
of features to help programmers who do not know the
exact syntax [19]. For example, C32 has menus th:t
will insert commonly used functions. Also, the use:
can point to objects with the mouse and C32 will in-
sert a reference into the constraint using the correct
path expression. Of course, it also ba’ances paren-
theses. In the future, we will explore automatic in-
ferencing of constraints, as was done in Peridot [14].
We envision that when ‘‘guessing’’ mode is tumed
on, the system will try 10 find a likely constraint be-
tween the newly drawn object and the neighboring

objects.

The performance of constraints in Gamet is quite fast.
Evaluating constraints is not much slower than the
calculations the programmer would have to perform
anyway. On a Sun SPARCstation 1, a simple con-
straint evaluation (in Lisp) takes 110 microseconds.
This means that objects tracking the mouse can afford
to have dozens of constraints being re-evaluated for
each incremental mouse movement. The system
caches old values for constraints, so ones that do not
change value are not re-evaluated. We have dis-
covered that the primary performance problem with
constraints is not speed, but rather space. For each
constraint there must be pointers from slots that are

8ox Constraint Menu

depi]
attawt E]

l“wl‘l’l)ﬁll Custemine l
== ? =)

Line Constraint Menu

[~ pximary

- y ssieckien

e -3

T e

n (5]

Figure 5:

The dialog boxes from Lapidary [15] that allow the most
common constraints 0 be set. The menu on the wp is for
rectanguiar objects (which includes circles and aggregates),
and the one on the bottom is for attaching lines to each
other or to recianguiar objects. For the box conswaints, the
column of buttons labeled :top will cause the dependent
object 1o be: on top of the other abject, just inside the other
object, centered verticaliy in the object, just above the other
object, or just below the other object. Similarly, the row of
buttons labeled :left determine the horizontal relationship.
The button on the bottom constrains the width, and the one
on the right constrains the height. The wxt fields, like
offset and scale are used to supply parameters (o the
consgaints. For lines, either end of the line can be auached
10 various positions of a box-like object or of another line.

192

Declarative Programming in 3 Prototype-Instance System

- 36

referenced to the constraints that use them, and from
constraints to the slots they reference. We observed
that many of the constraints are only used once when
the object is initially placed, so we devised a tech-
nique where no memory is allocated for these con-
straints. This has been enormously effective, and
decreases the total run-time storage requirements of
applications on average by about 50%. For some
dialog boxes, like the color selection palette, 1500
constraints are reduced to only 100. As an example
of a large scale application, 6690 constraints (which is
over 40%) are eliminated from the Lapidary graphical
editor.

The use of constraints provides the programmer with
a number of important benefits. ‘The most obvious is
that the system maintains the relationships among ob-
jects that otherwise would be the responsibility of the
programmer. More relevant (o this paper, however, is
that constraints allow objects to provide an abstract
interface through top-level variables, and the
programmer can declaratively specify how to trans-
form the values for ail components. In fact, if you
need 10 use methods, constraints can even be used 10
dynamically determine which method to use for a
message based on the current state. This works be-
cause the value of any slot can be computed using a
constraint, and the value returned can be a function.
However, we do not know of anyone using this fea-
ture.

6. Input Model

Virually all toolkits, graphics packages, and window
managers use the same input model: a stream of input
event records is sent to the appropriate window. The
application program is expected 1o de-queue these
events and interpret them. Gamet uses an entirely dif-
ferent mudel, based on encapsulating input behaviors
separately from the graphics {16, 18). This handles
all input so objects never need event-handling
methods.

Gamet provides seven basic **Interactor’* objects that
handle all of the most common direct manipuiation
behaviors. The Interactor objects in Gamet are com-
pletely independent of any graphical representation,

193

and are purely input filters.> The seven types of Inter-
actors currently in Gamet are:

Menu-Interactor - Used 1o select one or more
from a set of objects. This can be used for menus,
radio burons, check boxes, simple push butions,
and the arrows on scroll bars. In addition, this
can be used to cause application objects to be-
come selected in a graphics editor.

Move-Grow-Interactor - This is used to move
an object or one of a set of objects using the
mouse. There may be feedback to show where
the object will be moved, or the object itself may
move with the mouse. This Interactor can be used
to implement the indicator for one-dimensional or
two-dimensional scroll bars, and aiso for moving
application objects in a graphics editor.

New-Point-Interactor - This is used when
one, two or an arbitrary number of new points are
desired from the mouse.

Angle-Interactor - This is used to get the angle
the mouse moves around some point It can be
used for circular gauges or for rotating objects.

Trace-Interactor - This is used to get all of the
points the mouse goes through between start and
end events, for use in free-hand drawing.

Text-String-Interactor - This is used (o edit
text and supports single-line, or multi-line and
multi-font strings. A key transiation table allows
arbitrary mappings of editing operations.

Gesture-Interactor - This supports freehand
gesturing, like drawing an "X" on top of an object
to delete it.

Unlike other implementations of the Model-View-

Controller idea, in Garnet the programmer never

needs (o create new kinds of *‘controllers.”” It is only

necessary (o create an instance of a pre-defined Inter-
actor and to supply a few parameters. An important
reason that this works is that we have carefully
chosen the parameters so that they support the full
range of direct manipulation interfaces. For example,
the designer can specify which mouse button or
keyboard key causes the Interactor 1o start operating,
and which causes it to stop. Menu-interactors can be
told whether single or multiple selections are desired.
The most important parameters, however, are the

INote that this use of the term **Interactor” is different from
some other systems that use the term for an entire widget
(graphics plus behaviors). In Garnet, Intera.tors have no
graphics, only behavior.

37.

Second Garnet Compendium

graptucs that the Interactors operate over. We have
observed that although direct manipulation interfaces
vary widely in their “*look,’” they are mostly identical
in their **feel’" or behavior. Therefore, by separating
the behavior from the graphics, and including
parameters for the most popular options, virtually all
behaviors can be provided without rcquiring new
code.

For example, to create an interactor which moves
around any of the objects which are components of an
aggregate called my~agg, the following is all that is
needed:

{¢reate-instance ‘'my-mover Move-Grow-Interacrorf
(: femdback-~ob) my-feeddack-rect)
(:stazt-where "(:eleament-of my-agg)}!

The rest of the properties of my-mover will use the
default values (start on left button down, move the
object rather than grow it, etc.). After it is created,
my-mover will continuously watch for a mouse
leftbution press over any of the objects in my-agg.
When this happens, it will make the feedback object
(my-feedback-rect) visible and begin moving it
to follow the mouse until the mouse button is
released. At that point, the my-£feedback-rect
will become invisible and the actual object will be
moved. (If no feedback object had been supplied,
then the element of my-agg would be directly
dragged by the mouse.)

There is a standard protocol through which the Inter-
actors interface (0 the graphical objects. The
move-grow-interactor seis the :box slot of
objects, and the : left and :top slots would be tied
to the :box slot with constraints. This allows theie
10 be arbitrary filtering without the Interactor having
1o know about it. To find which object is under the
mouse, the Interactor sends a message to the ag-
gregate. This will, in rum, send messages to each of
the componenis. However, the programmer never has
to write methods for these, since all graphical objects
are created by combining the Gamet primitives which
supply the appropriate methods.

The Menu~Interactor has iwo pivtocols: it can
take a separate feedback object as a parameter, or it
will direcily modify the object that becomes selected.
If there is a feedback object, then its :obj-over
slot is set to the object that becomes selected. The
feedback object is expected to have constraints that

will cause the posidon and size o depend on
whatever object is set into the :obj-over slot For
example, the left formula might be (gvl :obi-
over :left), which will make the feedback obiect
have the same left position as whatever object is
selected. Notice that the Interacior does not need 10
know whether the feedback object is a simple XOR
rectangle Or an aggregate containing squares that
serve as selection hanales.

If there is no feedback object, then the
menu-interactor sets the :selected slot of
the object itself. There might be constraints that
change position, color or font based on whether the
object is selected or not. For example, to implement a
Motif-like pushed-in appearance for the bunon of
Figure 6, the color of the : top-edge might be com-
puted by the constraint:

(if (gvl :parent :selectedj
black ; ther case
white) ; eisecase

The formula on the :bottom-~edge would be the
opposite, and the color of the £i11-inside would
choose between gray and dark-gray. Note that this is
all performed without methods: the parameters (o the
Interactors are values in slots, and the interface be-
tween the Interactors and the graphical objects is
through setting well-defined slots in the graphics.

It is always legal in Gamet 10 set a slot's value (the
slot does not have to be pre-defined). Therefore, if
the programmer does not want anything to happen
when the object becomes selected, he or she can
simply not attach any constraints to the stots. There 18
never a worry of a '‘Message-not-understood’’ ~rror
as in a conventional class-instance system, where the
programmer would have 10 define an appropriate
method at the root class {e.g., ob ject), to make sure
that there would never be a run-time error if arbitrary
objects could be selected.

Since Interactors can be specified by filling in
parameters, it is easy to create them in interactive
editors. For example, Lapidary provides a dialog box
for each Interactor type that allows graphics to be al-
tached and parameters to be set. This is how
Lapidary allows arbitrary behaviors to be connected
1o application-specific graphics interactively, without
requiring the programmer 10 write code. Interactors
can be added to aggregates, so the single

194

Declarative Programming in a Prototype-Instance System

- 38

Figureé:
The button of Figure 1 can be made to look like it moves in
3-D by changing the colors of the pans. The Interactor
does not need 10 know how the button responds o becom-
ing selected.

create-instance call will create t*e graphics
and Interactors necessary for an object to behave cor-
rectly.

W have found the Interactor model 10 be extremely
effecive. This model makes it much easier to
program direct manipulation interfaces. However, we
have found a few cases where the built-in parameters
are not sufficient. In this case, it is possible for the
programmer 1o write methods to filter the data. Typi-
cally, these are used when custom processing is
needed when the Interactor starts, stops or aborts.
Even when this is required, however, the interface the
programmer sees is still higher-level than conven-
tional event-handling. Details are availabie elsewhere
[20).

7. Example and Comparisons

To give an example of the style of programming in
Gamnet, we will skewch the implementation of the toy
graphics editor in Figure 7 and compare it with the
implementation in conventional object-oriented lan-
guages. Here, every time the user clicks with the
right mouse button in the drawing window, a new box
and arrow is created using the cumremt line style
(which is shown on the left). The arrows always go to
the previously-created box. The user can click with
the left mouse button to select objecis. and the
handles appear. Dragging a handle moves or grows
the selected object. The Delete button deletes the
selecied object, and pressing on a new line style while
an object is selected causes the object to change. Of
course, much of this program could be created using
the Lapidary graphical editor without writing any
code, but we will assume here that Lapidary is not
being used, and the programmer wanis {0 write every-
thing by hand.

......

Figure 7:
A simple editor. Box 3 has been selected by the user, and
the current fine-style (shown on the Ieft) is a thin line.

To implement this in Gamnet, the programmer would
first create prototypes for the two kinds of objects that
can be created: an arrow, and an aggregate containing
a rounded-rectanz!z and a text object. The aggregate
will contain constraints that keep the text centered at
the top of the rounded rectangle. Then, a main win-
dow would be created containing the buttons for
delete and quit, and four line objects to serve as a
palette. A rectangle would be added 1o show which
line style is selected, and a menu-interactor would be
attached to the four lines with the rectangle as the
feedback.

To allow new objects to be created, « New~Point -
Interactor would be added to the right part of the
window which starts on the right button. A parameter
to this interactor is the prototype from which in-
stances will be created. Here, this slot will contain an
aggregate containing the prototype box and armows.
Formulas in the prototypes will cause the armows to
have the appropriate end points and 'he string to have
the appropriate value.

To make the objects selectable, it is only necessary to
include the pre-defined selection-handle-
widget, which displays the squares around the ob-
jects and allows objects to be resized and moved. In-
temally, this wilget contains many formulas that
cause the squares (o be attached to the objects at the
appropriate places (it works for both boxes and lines).
The value of the selection-handle widget is the
selected object, which will be accessed by the call-
back functions for changing the line-style and delete.

195

39-

Second Gamet Compendium

To compare the implementations, we asked a number
of people to implement the same editor in different
object systems and toolkits. Most of these people
were the designers of the toolkits.

One implementation was in GINA++, a research
wolkit in C++ from the German National Research
Center for Computer Science.* The implementation
defines classes for the line-style palette items, for the
commands for creating and deleting objects, for the
graphical objects, and for the editor and its panes.
Methods on the graphical objects inciude setting and
accessing the ‘'to’’ and “*from'’ objects (for the ar-
rows), drawing, and drawing with dashed outine to
serve as a feedback object. Methods for the editor
include creating the windows, and accessing and set-
ting the current line-style and the selected object.
GINA++ provides a retained-object model, so the
programmer does not need to write erase or redisplay

methods. Support for selection handles around a rec--

angular object is built in, but the programmer over-
rode the selection draw-method for lines to only show
handles at the end points. To handle creating new
objects, when GINA++ sends the button_press
message to the background window, the CreateBox
object is created. This special command object
defines methods to handle the incremental feedback
when dragging out a new box, and then creating a
new rounded-rectangle and a new arrow when the
mouse button is released.

CLIM {11} is a popular commercial Lisp toolkit that
uses CLOS, the standard Common Lisp object sys-
tem. Like Gamet, CLIM supplies a retained object
model with incremental redisplay (which they call
‘‘streams’’) and high-level input handling (called
*‘translators’’). Also, CLIM provides a declarative
mechanism for defining the window layout, but not
for object definitions, so the programmer wrote draw-
methods for the objects and selection handtes. The
programmer also had tc write an event handler for the
creation of objects, since there is not an appropriate
*‘transiator.”’

In both GINA++ and CLIM, methods are needed for

“For more information on GINA++ or CLM/GINA for Lisp,
conzact Mike Spenke, P.O. Box 1316, D-W-5205 St Augusan 1,
Germany, +49 2241 14-2642, spenke@gmd.de.

drawing objects, since they cannot be specified
declaratvely. How the rectangle the text is displayed
is hard-wired into the draw method of the box class,
and thus it might be harder 1o modify than in Gamet,
especially by interactive programs. Because they do
not have constraints, the coge must explicidy redraw
the lines and the text label when the box is moved,
whereas in Gamet this is handled automacdcally.

As a small measure of whether the Gamet technique
is more effective, Figure 8 shows the coding time and
size informadon for seven implementations of the
editor in Figure 7. All but the MacApp one was im-
plemented by ore of the designers of the toolkit, so
you can expect that they knew the systems well. The
MacApp implementor was also an expert with his sys-
tem. Zdrava is an experimental, unfinished system,
so the times for it are simply estimates from the desig-
ner. Of course, these numbers do not constitute a
scientific study, and the other programmers did not
know that they were participating in a time test. Fur-
thermore, the example was chosen by the Gamet
designer. Sill, the data does suggest that graphical
programs can be smaller and written faster in Gamet

System Language | Time Lines of Code
Gamet Common Lisp | 2.5 hrs 183 lines
CLIM+Zdrava | Common Lisp [2.5 hrs (est.) | 190 (est.)
CLIM Common Lisp {4.5 hrs 331 lines
MacApp Obgect Pascal |9 hrs 1026 lines
GINA++ C++ 16 hours 550 lines
LispView Common Lisp | 2 days 500 lines
CLM. GINA | Common Lisp | 2 w 3 days 273 lines

Figure 8:
Times and code size to create the editor of Figure 7 using
vanious sysiems. CLIM and GINA are discussed in the
anicle. MacApp is a commercial product of Apple and
LispView is a commercial product ot Sun.

8. Modularity

Some people claim that using methods is a berter in-
terface 0 objects because it supports better infor-
mation hiding. The motivation is that the internal im-
plementation of the object can be more easily changed
if the interface is through methods. Therefore some
object systems, such as SELF [5], do not allow direct
access 10 any object variables, but only provide access

196

Declarative Programming in a Prototype-Instance System

through methods. Gamnet takes an opposite approach,
and the main interface is through the data of objects.
However, this can be just as modular.

-

8.1 Data vs. Methods
In Gamet, an object advertises its input and output
slots, and most objects of the same type use the same
slots (for example, all graphical objects have : left,
itop, :width, :height, :filling-
style, etc). This comresponds to advertising the
exported methods in other object systems. In Gamnet,
through the use of constraint formulas, objects can
transform the parameter values in whatever way is
desired. For example, the Menu~Interactor sets
the : selected siot of objects. It is up to the inter-
nal constraints in the selected object what this does, if
anything. The color, position, or fort of the object
might have a formula depending on the : selected
slot, and the Interactor does not care. This interface is
just as modular as if the Interactor called a generic
Become-Selected method

Although Gamet does not currently provide
mechanisms to declare which slots of an object can be
used from outside and which are intemal, this could
easily be added. This would provide the same protec-
tion as class-instance models which have public and
private methods.

8.2 Constraints vs. Methods

Constraints also contribute to modularity in another
way, by fixing a flaw in the conventional, imperative
object-oriented model. In the conventional model, 10
achieve certain types of behavior, the programmer
must either explicitly arrange the methods so they ex-
ecute in the proper order, thus violating the
modularity of objects, or else allow the methods to
execute in an arbitrary order, thus evaluating methods
more times than necessary, and possibly destroying
the correctness of the program if the methods commit
side-effects. For examplc, suppose that a programmer
wants 10 keep a box called A centercd above two other
boxes called B and C (Figurc 9). In a conventional
system, the programmer might add 2 message 0 the
move methods in B and C that calls a centering
method in A. Later the programmer decides that C
should always be 20 pixels to the right of B. The
programmer thus expands the move method in B t0
send a message 10 the move method in C. Without

proper scquencing, the centering method in A may be
called twice, once by the move method in A, and once
by the move method in B. However, the centering
method in A should only be called once, after the
methods in both B and C have terminated.

Figure 9:
A box centered over two other boxes. If either box B or C
moves, box A should move so that it stays centered over the
boxes.

In this case, the programmer is faced with two equally
unpalatable choices. The programmer can choose not
to provide explicit sequencing, in which case the
centering method in A may execute twice. This is both
wasteful and potentially dangerous if the centering
method commits side-effects (in this case it probably
would not, but obviously there are situations where
this could pose a problem). Alternatively, the
programmer could rely on the fact that the move
method in C calls the centering method in A, and thus
not call the centering method itself. However, the im-
plementation of the move method in B now depend on
the implementation of the move method in C, which
violates the notion of modularity.

Notice that in cither case the modularity principle is
additionally violated because B and C have to know
that A depends on them (and later B has to know that
C depends on it). If the centering relationship be-
tween A, B, and C is later destroyed, not only must the
centering method in A be deleted, but the move
mcthods in B and C must be changed as well. (A
similar situation arose in the example of Figure 7.
where the conventional systems put code in the
methods of the boxes to maintain the lines.)

197

41-

Second Gamet Compendium

In a constraint-driven language, neither of these
problems arises since the constraint solver handles
both communication between objects and the ordering
of constraints. In the above example, the programmer
would initially write a constraint that centered A

- above B and C. Later the programmer would add an
additional constraint placing C 20 pixels to the right
of B. The constraint solver would automatically en-
sure that the constraints were evaluated in the proper
order. Thus the programmer would not have 1o worry
about sequencing. In addition, the move methods for
B and C would not have 10 know about the relation-
ships among the three objects (the constraint solver
would be responsible for propagating the change in-
formation), so they would simply modify the local
state of their object. If one or both of the constraints
were later deleted, the move methods would not have
1o be modified. Thus constraint-driven programming
better preserves the modularity of objects.

8.3 Interactors vs. Methods

The Gamet input model also provide better
modularity than found in other systems. The graphics
are entirely independent of the behaviors, and they
can be developed and modificd scparately. In other
systems, models, views and controllers have always
been tightly coupled, so they all had to be carcfully
modified together.

8.4 Re-use

Another key feature of Gamet is that it provides better
software re-use than most other toolkits. The
programmer does not have to re-program new event
handlers, since the built-in Interactors are sufficient.
The programmer does not need 10 deal with window
refresh or maintaining relationships among objects,
since the abject system and constraint solver handle
this. In addition, since we can be sure that there is an
object in memory for every object on the screen, it is
possible to provide higher-level widgets, such as the
selection-handles. The handles contain constraints

that reference the selected object. Toolkits without
retatned objects cannot supply setection handle

widgets because they would need to access the
application’s internal data structure {0 know where
objects are and how to move and grow the objects.

Another feature of Gamet is that, if the programmer
wants to make a slight modification of an existing ob-

198

ject, it is only necessary to specify the specific
changes 1o the graphics, rather than having lo wnie
completely new draw methods.

9. Conclusion

The style of programming in the Gamet object system
is quite different from other object systems: ‘he
programmer collects together graphical objects, writes
constraints to define the relationships among them,
and then attaches instances of pre-defined Interactor
objects to cause the objects 1o respond to the user.
Usually, much of the ‘‘programming’’ can be done
with graphical, interactive tools, rather than by writ-
ing code. Even when not usir.g interactive tools,
programmers rarely write methods when creating
Gamet code. Our experience suggests that this style
of programming is much more effective for graphical
user interfaces. 1t would be interesting to see which
other types of programming it works well for. For
example, object-oriented data bases seem like a good
candidate, since they clearly use a *'retzined-object
model,’’ and a primary use of methods there is 1o up-
date objects and to maintain consistency among
various objects. Many other application areas might
also benefit from this style of programming.

Acknowledgements

For help with this paper, we would like to thank Chrs
Laffra, Francesmary Modugno, Andrew Mickish,
Scott McKay, Jade Goldstein, James Landay, and
Bemita Myers. Thanks also to Hans Muller, Scott
McKay, Chrstian Beilken, Markus Soflenkamp, and
John Pane for implementing the example application
in different systems and for helping me understand
their code.

This research was sponsored by the Avionics
Laboratory, Wright Research and Development Cen-
ter, Aeronautical Systems Division (AFSC), U. S. Alr
Force, Wright-Patterson AFB. OH 45433-6543 under
Contract F33615-90-C-1465, ARPA Order No. 7597.

The views snd comsciusions contained in ihis deeu:
ment are those of the authors and should not be inter-
preted as representing the official policies. either ex-
pressed or implied, of the U.S. Government.

Declarative Programming in a Prototype-Instance System

References

1. Paul Barth. "An Object-Oriented Approach to
Graphical Interfaces”. ACM Transactions on
Graphics 5. 2 (April 1986), 142-172.

2. Alan Boming. "The Programming Language
Aspects of Thinglab; a Constraint-Oriented Simula-
tion Laboratory”. ACM Transactions on Program-
ming Languages and Systems 3, 4 (Oct. 1981),
353-387.

3. Alan Boming and Robert Duisberg. “Constraint-
Based Tools for Building User Interfaces”. ACM
Transactions on Graphics 5, 4 (Oct. 1986), 345-374.

4. Paul R. Calder and Mark A. Linton. Glyphs:
Flyweight Objects for User Interfaces. ACM SIG-
GRAPH Symposium on User Interface Software and
Technology, Proceedings UIST 90, Snowbird, Utah,
Oct., 1990, pp. 92-101.

5. Craig Chambers, David Ungar, and Elgin Lee.

" An Efficient Implementation of SELF, a
Dynamically-Typed Object-Oriented Language Based
on Prototypes”. Sigplan Notices 24, 10 (Oct 1989),
49-70. ACM Conference on Object-Oriented Pro-
gramming; Systeins Languages and Applications;
OOPSLA’89,

6. James D. Foley and Victor L. Wallace. "The Ant
of Natural Graphic Man-Machine Conversation”.
Proceedings of the IEEE 62, 4 (April 1974), 462-471.

7. Scott E. Hudson and Shamim P. Mohamed. “Inter-
active Specification of Flexible User Interface Dis-
plays™. ACM Transactions on Information Systems 8,
3 (July 1990), 269-288.

8. Glenn E. Krasner and Stephen T. Pope. “A
Description of the Model-View-Controller User Inter-
face Paradigm in the Smalltalk-80 system”. Journal
of Object Oriented Programming 1,3 (Aug. 1988),
26-49.

9. Henry Lieberman. "Using Prototypical Objects to
Implement Shared Behavior in Object Oriented Sys-
tems”. Sigplan Nodices 21, 11 (Nov. 1986), 214-223.
ACM Conference on Object-Oriented Programming;
Systems Languages and Applications: OOPSL.A'86.

10. Mark A. Linton, John M. Vlissides and Paul
R. Calder. "Composing user interfaces with Inter-
Views". IEEE Computer 22,2 (Feb. 1989), 8-22.

11. Scou McKay. "CLIM: The Common Lisp Inter-
face Manager”. Comm. ACM 34,9 (Sept. 1991),
58-59.

199

12. Jon Meads. "The Standards Factor”. SIGCH!I
Bulletin 19, 1 (July 1987), 34-35.

13. Kenneth J. Meltsner. "A Metallurgical Expert
System for Interpreting FEA", Journal of Metals 43,
10 (Oct. 1991), 15-17.

14. Brad A. Myers. Creating User Interfaces by
Demonstration. Academic Press, Boston, 1988.

15. Brad A. Myers, Brad Vander Zanden, and Roger
B. Dannenberg. Creating Graphical Interactive Ap-
plication Objects by Demonstration. ACM SIG-
GRAPH Symposium on User Interface Sofiware and
Technology, Proceedings UIST 89, Williamsburg,
VA, Nov., 1989, pp. 95-104.

16. Brad A. Myers. Encapsulating Interactive Be-
haviors. Human Factors in Computing Systems,
Proceedings SIGCHI'89, Austin, TX, April, 1989, pp.
319-324.

17. Brad A. Myers, Dario A. Giuse, Roger

B. Dannenberg, Brad Vander Zanden, David

S. Kosbie, Edward Pervin, Andrew Mickish, and
Philippe Marchal. "Gamet: Comprehensive Support
for Graphical, Highly-Interactive User Interfaces”.
IEEE Computer 23, 11 (Nov. 1990), 71-85.

18. Brad A. Myers. "A New Model for Handling In-
put”. ACM Transactions on Information Systems 8, 3
(July 1990), 289-320.

19. Brad A. Myers. Graphical Techniques in a
Spreadsheet for Specifying User Interfaces. Human
Factors in Computing Systems, Proceedings
SIGCHI'91, New Orleans, LA, April, 1991, pp.
243-249.

20. Brad A. Myers, Dario Giuse, Roger

B. Dannenbesg, Brad Vander Zanden, David Kosbie,
Philippe Marchal, Ed Pervin, Andrew Mickish, James
A. Landay, Richard McDaniel, and Vivek Gupta. The
Gamet Reference Manuals: Revised for Version 2.0.
Tech. Rept. CMU-CS-90-117-R2, Camegie Mellon
University Computer Science Depantment, May,

1992.

21. Brad A. Myers and Brad Vander Zanden. "En-
vironment for Rapid Creation of Interactive Design
Tools". The Visual Computer; International Journal
of Computer Graphics 8, 2 (Feb. 1992), 94-116.

22. Lynn Andrea Stein, Henry Licbcrman, and David
Ungar. A Shared View of Sharing: The Treaty of Or-
lando. In Won Kim and Frederick H. Lochovsky,
Ed., Object-Oriented Concepts, Databases, and
Applications, ACM Press, Addison-Wesley, New
York, NY, 1989, pp. 31-48.

43 -

Second Garnet Compendium

23. Pedro A. Szekely and Brad A. Myers. "A User
Interface Toolkit Based on Graphical Objects and
Constraints”. Sigplan Notices 23, 11 (Nov. 1988),
36-45. ACM Conference on Object-Orienied Pro-
gramming, Systems Languages and Applications;
OOPSLA'88.

24. Brad Vander Zanden and Brad A. Myers.
Automatic, Look-and-Feel Independent Dialog Crea-

tion for Graphical User Interfaces. Human Factors in -

200

Compuling Systems, Proceedings SIGCHI'90, Seat-
tle, WA, Apnil, 1990, pp. 27-34.

2S. Brad Vander Zanden, Brad A. Myers, Dario
Giuse and Pedro Szekely. The Importance of Pointer
Variables in Constraint Models. ACM SIGGRAPH
Symposium on User Interface Software and Technol-
ogy, Proceedings UIST'91, Hilton Head, SC, Nov.,
1991, pp. 155-164.

45 -

A Y)]
— " Nisual

Reprinted from The Visual Computer. International Journal of Conputer
Graphics. Vol 8, No. 2, February, 1992. pp. 94-116.

e

Computer

Environment

for rapidly

creating interactive
design tools

Brad A. Myers! and
Brad Vander Zanden?

! School of Computer Science, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA
15213 USA

¢-mail: brad.myers@ cs.cmu.edu

* Computer Science Department, University of Ten-
nesse, 107 Ayres Hall, Knoxville, TN 37996-1301,
usa

e-mail: bvz@cs utk.edu

The Garnet toolkit was specilically de-

'signed to make highly interactive graphi-

cal programs easier to design and imple-
ment. Visual, interactive, user-interface de-
sign tools clearly fall into this category.
At this point, we have used the Garnet
toolkit to create three different interactive
design tools: Gilt, a simple interface build-
er for laying out widgets; Lapidary, a
sophisticated design tool for constructing
application-specific graphics and custom
widgets; and C32, a spreadsheet interface
to constraints. The features of the Garnet
toolkit that made these easier to create in-
clude use of a prototype-instance object
system instead of the usual class-instance
model, integration of constraints with the
object system, graphics model that sup-
ports automatic graphical update and sav-
ing to disk of on-screen objects, separation
of specifying the graphics of objects from
their behavior, automatic layout of graphi-
cal objecls in a variely of styles, and a wid-
get set that supporis such commonly used
operations as selection, moving and grow-
ing objects, and displaying and setting
their properties.

Key words: User-interface design environ-
ments - Toolkits ~ Object-oriented sys-
tems - Constraints — Input handling -
Garnet

Offprint request to: B.A. Myers

1 Introduction

Creating visual interactive design tools can be a
difficult task when the appropriate support is not
available. The Garnet toolkit (Myers et al. 1990)
was specifically designed to make the construction
of interactive, graphical, direct manipulation pro-
grams, including interactive user-interface builders,
significantly easier. A toolkit is a collection of inter-
action techniques (sometimes called widgets or
gadgets), such as menus, scroll bars, and buttons,
along with a programming mechanism to create
them. The Garnet toolkit has allowed us to quickly
create a number of interactive user-interface desjgn
tools. It also provides an appropriate platiorm on
which to investigate novel types of graphical tools.
This article concentrates on those aspects of the
Garnet toolkit that make it effective for creating
interactive design tools. It uses examples from Gar-
net's own design tools 10 illustrate how the various
{eatures of the Garnet toolkit simplified the tools’
implementation. A number of previous articles
have described Garnet (Myers et al. 1990} and the
design tools (Myers et al. 1989; Vander Zanden
and Myers 1990; Myers 1991 a), but none have de-
scribed in-depth the specific features of the toolkit
that were designed to support interactive design
tools. Neither have any ol the previous Garnet
papers discussed how the components of the Gar-
net toolkit simplify implementing the unique func-
tionality required by interactive design tools.

2 The Garnet project

Garnet, which stands for Generating an Amalgam
of Real-time, Novel Editors and Toolkits, ts a re-
search project at Carnegie Mellon University. An
unportant goal is to wvestipate appropriate foun-
dations for the woofkits of the future so they will
be able to more effectively support highly mterac-
tive graphical user-interface software. In addivion,
Garnet aims to create high-level interactive design
tools to make user-interface software significantly
casier to design and tmpiement by both program-
mers and non-programmers.

Garnet contains both programming and interac-
tive design tools. The programming tools are called
the Garnet Tooikit, which is divided into two
layers. The lower layer, also called the toolkit in-
trinsics, provides functionality that allows widgets
and application-specific graphics to be created.

_ This includes the object system, constraints, input

handling, and graphical object support. The Gar-
net toolkit intrinsics are “look-and-feel indepen-

The Visusl Computer (19921 8 9¢- 116
17 Springer-Veslag 1992

g Yo
Nisual —
Computer
abens [Tatle: [_Tong String |
A .. . Labell Q
Label2 o9 Label2 o
. 1
e R &
Labeld ! 0 =
Labell 200 300 : 4
Titde] *° . 14
Labell s 4+
Label2| O
Label3 eracure : Fig. 1. Some of the gadgets in the Garnet toolkit
Labeld 10 with the Garnet look-and-feel, which has the
alz2s 1 &1 | buttons floating above the shadow, and moving in
Label® EHERS (3] | “simulated 3-D” towards the shadow when
pressed

dent,” which means that arbitrary graphics and be-
baviors can be implemented. The intrinsics also
provide a machine- and window-manager-indepen-
dent interface, so that software written using the
Garnet toolkit intrinsics will run without change
on any platform for which Garnet has been imple-
mented. Currently, Garnet runs on the X Window
System, but Macintosh and Display Postscript ver-
sions are planned.

The next layer of the toolkit contains a “widget
set,” which is a large and growing collection of
menus, buttons, gauges, scroll bars and sliders
(Fig. 1).

The interactive Garnet design tools include Giit,
Lapidary, C32, and a hybrid interactive-program-
ming tool, Jade. Gilt (Myers 1991b) is an interface
builder, which is a program that lets the designer
graphically place user-interface components in a
window, and thereby create menus, palettes, and
dialog boxes. Gilt provides most of the functional-
ity found in other interface builders, but was creat-
ed in only about two man-months and contains
about 2700 lines of Lisp code. Lapidary (Myers
et al. 1989; Vander Zanden and Myers 1991) is a
-esearch vehicle for investigating how to provide
new functionality in visual interactive design tools.
For example, it lets the user-interface designer
draw pictures of what the user interface should
look like and then demonstrate how it shouid
change in response to user input. Lapidary is the
only interactive design tool that allows the behavior
of application-specific graphical objects to be de-
fined without writing code. C32 is a spreadsheet
interface for defining constraints (Myers 1991a).

Jade automatically creates menus and dialog boxes
from a textual list of their contents (Vander Zanden
and Myers 1990). A graphics artist can then modify
his layout using a drawing editor, and Jade will
remember the changes, even if the original textual
specification is changed.

Garnet is implemented in Common Lisp and cur-
rently uses the X window manager. Garnet is there-
fore portable and runs on various machines and
operating systems. For example, Garnet runs on
CMU, Lucid, Allegro, TI, and Harlequin Common
Lisps on hardware such as Sun, DECStation, TI
and HP. Garnet does not use the Common Lisp
Object System (CLOS) or any Lisp or X toolkit
(such as InterViews (Linton etal. 1989), CLUE,
CLIM, or Xtk (McCormack and Asente 1988)).
The toolkit layer of Garnet (Myers et al. 1991) and
Gilt have been released for general use, and there
are over 150 licensed universities and companies.
We expect to release other parts shortly.!

3 Related work

The Garnet system as a whole is a user interface
development environment, which is sometimes
called a user interface management system (UIMS).
These tools have been surveyed in various places
{Hartson and Hix 1989; Myers 1989a; Brown and
Cunningham 1989).

There are many different toolkits available today.
' Garnet is available free of charge. Contact the first author

for more information about obtaining Garnet, or send clectron-
ic mail to garnet@cs.cmu.cdu

95

47 -

“Visual

Computer

The most famous are probably Macintosh Tool-
box, Windows and Presentation Manager toolkits
for the PC, and various X toolkits based on Xtk
(McCormack and Asente 1988) including Motif
and OpenLook. All of these toolkits provide librar-
ies of widgests, but no support for handling input
and output in the main application window. The
NextStep toolkit for the NeXT computer provides
an object-oriented set of widgets, as well as a well-
defined method for subclassing the existing objects
to create application-specific objects. However,
these objects still have to deal with all input and
output directly. None of these toolkits provide spe-
cial features to make it easy to create interactive
design tools.

Some of the features found in the Garnet toolkit
have been used in previous systems, but Garnet
is the first to integrate them all. The prototype-
instance model for objects (Lieberman 1986) has
been used in SELF (Chambers et al. 1989). Con-
straints, which are relationships that are specified
once but maintained antomatically by the system,
have been widely used by research systems (Born-
ing and Duisberg 1986). Constraints can be either
one-way or multi-way. One-way constraints allow
the constraint solver to change only one of the
objects in the constraint in order to satisfy it; muiti-
way constraints allow any of the objects in the
constraint to be changed. Early multi-way con-
straint systems include Sketchpad (Sutherland
1963), which pioneered the use of graphical con-
straints in a drawing editor in the early 1960s, and
Thinglab (Borning 1981), which used constraints
for graphical simulation. More recently, Thinglab
has been refined to aid in generating user interfaces
(Freeman-Benson etal. 1990). CONSTRAINT
(Vander Zanden 1989) provided a user-interface
development environment that employed muiti-
way constraints, but introduced a new constraint-
solving algorithm that made multi-way constraints
efficient enough to be solved in real time. Most
systems that have been designed for developing
user interfaces use one-way constraiats because of
their simplicity and efficiency. Grow (Barth 1986),
Peridot (Myers 1988), and Apogee (Henry and
Hudson 1988) are three examples. Grow was per-
haps the first user-interface development system
that employed constraints, Peridot was the first to
try to infer constraints, and Apogee was the first
to employ lazy evaluation. Garnet currently uses
one-way copstraints, but a more powerful modei
is being investigated.

96

The event-handling part of Garnet categorizes be-
haviors into a few “interactor™ object types and
is based on the Model-View-Controller idea from
Smalltalk (Krasner and Pope 1988). However, the
Views and Controllers tend to be so tightly linked
in Smalltalk that the programmer must program
new Controllers for most new objects, whereas in
Gamet programmers rarely need 1o program new
interactors. In addition, Garnet’s interactors are
built into the toolkit, whereas in Smalltalk the pro-
grammer must code the event handlers. Finally,
the interactors provide a rich set of parameters for
customizing their behavior so that it is unusual
for a programmer to create subclasses of the built-
in interactor types (although it is possible).

Gilt, the Garnet Interface Builder, is very similar
to other interface builders, such as Menulay (Bux-
ton et al. 1983), Trillium (Henderson 1986), Dialog-
Editor (Cartelli 1988), vu (Singh and Green 1988),
NeXT'’s Interface Builder, the Prototyper from
Smethers Barnes for the Macintosh, and UIMX
from Visual Edge for X. Lapidary extends the ideas
in these to support the creation of widgets, based
on ideas in Peridot (Myers 1990a; Myers 1988).
Lapidary can also create application-specific
graphics.

C32 is based on financial spreadsheets like
VisiCalc, Lotus 1-2-3, and Microsoft Excel. Other
systems that have used spreadsheets for defining
user interfaces include NoPumpG and NoPumpll
(Wilde 1990). The NoPump systems were stand-
alone spreadsheets that were not integrated with
an toolkit, so they had to invent a constraint solver
and a way to handle input, which the Garnet tool-
kit provides to C32.

4 Garnet interactive design tools

This section describes several of the interactive de-
sign tools built by the Garnet group. Some external
users have aiso built interactive design tools on
top of Garnet [for example, Humanoid (Szekely
1990)]. Later sections will illustrate how various
features of the Garnet toolkit simplified the con-
struction of these tools.

4.1 Gilt

Gilt, the Garnet Interface Layout Tool, is a simple
widget layout tool patterned after the NeXT inter-

-48

H

Filename: |-sr/bun/qurnet/qilt/qgilt. lasp |

thject Name:| Rectangle 1 1

Properties...

Debug Level:

Fig 2 Gilt work window showing a sampie dialog box being
created

face builder. It is intended to help create dialog
boxes that do not change size and whose contents
do not change dynamically (although the widgets
can “grey out”™ when not valid). Gilt supplies a
palette of the built-in Garnet widgets (either with
the Garnet or Motif look-and-feel) plus rectangles,
lines, text labels, and bitmaps to be used as.decora-
tions. The user can select objects in the palette and
place them in a workspace window (Fig. 2). Objects
in the workspace window can be selected, moved
or changed in size, their text labels changed, and
their other properties set. Commands for duplicat-
ing and deleting. objects are provided. There is also
an Align command, which adjusts objects’ position
and spacing. :

If the user needs 2 more dynamic interface, for ex-
ample 1o have one object’s property tied to an-
other’s, the code generated by Gilt can be edited
using a text editor, or read into Lapidary (because
all the tools use the same file format).

4.2 Lapidary

Lapidary is a graphical interactive design tool that
allows users to pictonially specify all graphical as-
pects of an application, including the widgets that
surround application windows and the objects and
behaviors that go inside application windows
(Myers etal. 1989; Vander Zanden and Myers
1991). Lapidary is an acronym that stands for Lisp-
based Assistant for Prototyping [ateractive De-
signs Allowing Remarkable Yield.

Many of the windows that comprise the Lapidary
interface are shown in Fig 3. Lapidary provides
a direct-manipulation drawing editor that allows

Nisual —
Computer

users to create objects from scratch, such as the
floating button menu in Fig 3, or edit instances
of objects created from prototypes in libraries. A
set of iconic constraint menus allow users to posi-
tion objects in a scene. If users cannot find the
constraint they need, the customize button can be
hit to gain access to the C32 spreadsheet described
in Sect. 4.3. Users can specify behaviors either
through dialog boxes or via demonstration.

4.3 C32

C32 is a spreadsheet interface for defining complex
constraints (Myers 1991a). C32 stands for CMU’s
Clever and Compelling Contribution to Computer
Science in CommonLisp, which is Customizabie
and Characterized by a Complete Coverage of
Code and Contains a Cornucopia of Creative Con-
structs, because it Can Create Complex, Correct
Constraints that are Constructed Clearly and Con-
cretely, and are Communicated using Columas of
Cells that are Constantly Calculated so they
Change Continuously and Cancel Confusion.

The intention is that the Lapidary icons or a simi-
lar mechanism can be used for simple constraints,
but sometimes the user will need more complex
relationships. C32 provides the same benefits for
constraint definition as conventional spreadsheets
provide for financial operations. Some features of
C32 are:

- The current values of the constraints are visible
and are updated immediately if the associated
graphical object changes, either due to the user
interacting with the graphics or some program
changing a value. This makes the results of the
constraints visible and therefore more understand-
able.

~ Menus provide the most common functions that
might be inserted into constraints, so users do not
have to know the function syntax.

- Object and slot references are automatically gen-
erated, so users do not have to know the syntax
for references or the particular form the reference
should take (objects can be referenced directly by
name or indirectly through their position in the
aggregate hierarchy and C32 figures out which is
more appropriate). The user can select the referent
either by pointing to a C32 spreadsheet cell or just
by pointing to the actual graphical object in a Gas-
net window.

97

b}

omputer
@) ©) (e)
aaks dalets windew laad gudget

nare

HDLDRE
el

il

DAL

Choice of Items Interactor Az oxszance|
Ieterenter Name:{colof-merm]
e ¢ e @) BT
s am G]
By ——
- : Somibati-alrj
. QT B =~Q
o 1 Zingl ~Sondbask
risat reotees @) Frmt) i we Q)

- @@= Q
7::»4::_—._::
e @ ctow Q owte Qctomin Q

Last~-Add Q List-Toggle 0 List-Ranove Q
IO s [L Sa—

=

[

L

n

)

®

Fig. 3a—h. Various Lapidary windows. The drawing window (c)
contains floating buttons for a color menu. The consiraint menu
below it (g) has been used to align the objects within each
buctton, the items within the menu, and the black xor rectangle,
which is the final feedback (currently over “Orange™). The dialog
box in the lower-left corner (f) defines the menu behavior by

-~ C32 guesses how to parameterize constraints
when they are copied from one place to another
or generalized into procedures, so abstract and re-
usable constraints can be constructed by example.
- Graphical techniques are used to help trace and
debug constraints.

Each object has its own column in the spreadsheet,
with the rows showing the values of each of the
slots. Icons are used to show whether a slot is in-

98

indicating that the behavior will apply tc the objects in color-
menu-items and that the final feedback will be the black xor
rectangle. The window in the upper-left corer {2} contains the
main Lapidary commands, and the remaining windows contain
geometric properties that may be set in Lapidary

herited and whether it is calculated using a con-
straint. Figure 4 shows an example.

4.4 Jade

While Jade is only partiaily interactive, it is inter-
esting how it uses the features of the Garnet toolkit.
Jade (a Judgement-based Automatic Dialog Edi-
tor) takes a textual specification of a dialog and

-50

“Nisual —
Computcer

Fig. 4 C32 viewing three objects. The scroll bars can be used
to see more slots or columns. Changing the window's size will
change the number of slots and objects displayed (the number
of rows and columns). Field values are clipped if they are too
long, but can be scrolled using editing commands. The ® icon
means that the slot value is computed with a formula (con-
straint). All inherited slots are shown in italics and marked
with the (D icon. When a formula is inherited, the icon is next

automatically generates a dialog box (Vander Zan-
den and Myers 1990). It is typicaily used when
it is too inconvenient to use Gilt or Lapidary, for
example when an interface has dozens of dialog
boxes. A graphics artist can use a direct manipula-
tion editor to add decorations or modify the layout
created by Jade, and Jade will remember the
changes, even if the underlying textual specification
is modified. A sample dialog and its textual specifi-
cation is shown in Fig. 5. In laying out the dialog,
Jade consults designer-provided look-and-feef and
rule libraries. The look-and-feel libraries help Jade
decide which gadgets should be associated with
various elements of the textual specification. -For
example,. Jade has selected a Garnet-style radio
button in Fig. 5a and an OpenLook-style widget

in Fig. 5b to represent a single-choice behavior.

The gadgets for the look-and-fee! libraries can be
created using Lagpidary or C32. Jade uses the rule
libraries to help it lay out the dialog box. In the
future, we plan to develop an interactive design
tool that allows graphics artists to define rules by
example, perhaps by applying constraints to an ex-
ample object.

5 Toolkit properties

Many features of the Garnet toolkit were added
specifically to make it easier to create highly inter-

to the formula icon and the value is shown in a regular font.
This is because the value is usually different from the proto-
type's. For example, the :width slot of a text object usuaily
contains a formula that computes the width based on the ob-
ject’s font and siring value. Most text objects inherit this formu-
la, but still have a different current value, because their siring
and font values are different

active user interfaces, such as the interfaces of visu-
al interactive design tools. These include:

~ Use of a prototype-instance object system in-

stead of the usual class-instance model.

~ Integration of constraints with the object system.
Graphics model that supports automatic graphi-

cal update.

~ Separation of specifying the graphics of objects

from specifying the behavior.

- Support for saving objects on the screen or in

memory to disk as text files in a way that they

can be read back into the system.

- Automatic layout of graphical objects in a vari-

ety of styles, such as rows, columns, tables, trees,

and graphs.

- Widget set that supports such commonly used

operations ‘as selection, moving, and growing ob-

jects and displaying and setting their propertes.

Several of the features contain innovations, such
as structural inheritance in the prototype-instance
system, pointers in the constraint system, an inte-
gration of constraints with an automatic graphical
update system, interactors model for separating
graphics from behavior, and a method for minimiz-
ing the amount of information written to disk when
saving objects. Other features, such as automatic
layout and widget set are not novel but they are
useful in creating interactive design tools. The fol-
lowing sections discuss these features in detail.

99

51-

L

— Nisual -
Compuicer

T Propei
Fomt

Standord Fomts

Style uduiinn bou iuh's

Fomt FromFia |] <anh>o

[Edic Texx]] FGenerate Text from Formula[} [Remove Text Fommola

Texz Propertiss

Fomt
Stantaxd Fants

Fomdy | umas [ncivasica] ond | vesiabla |

Siee [cat [mesima] tees
Svte [mictins |
FoutFromFis [} [<Fommm l

(Edx Text) (Generate Taxt trom Formula) (Remmove Text Forle)

{(create~dialog
((("Font”
{{"Standard-Fonts"

("Size” ("small" "medium® "large™))
("Style"”
{"underline™ "bold"™ "italic")
{:behavior :multiple~choice})))}
{"Font From File"
(:behavior :text))
"<Formula>"}})
({"Edit Text" "Generate Text from Formula”
"Remove Text Formula®j
{:behavioi. :command)
(:stop—-action text-handler}))
(:stop-group (("OK™ "Cancel” "Go Away")
{:stop~action ‘'font-stop-action}))))

{create-dialog
((("cpen” ("edit™ ("copy"” "cut”™ "paste" “delete”)})
“save” "guit")
(:behavior :command)
€ {:stop-action control~-menu~-handler}}))

({"Family"™ ("times"™ "helvetica® “cnurier®™ "“symbol"))

Fig. 5a—c. Alternative Garnet a and Openlook b
style dialogs for specifying the properties of a
text object and controlling an applicaton. Both
dialogs’ layout and look-and-feel were generated
automatically by Jade from the same tcxtual
specification ¢

100

- 52

8.1 Prototype-instance model

5.1.1 General description

The Garnet object-oriented programming system
Supports a prototype-instance model, rather than
the conventional class-instance mode! used by
most other object systems, such as Smalltulk,
C+ +, and CLOS. In a prototype-instance model,
there is no distinction between instances and class-
es; any instance can serve as a “prototype” for
other instances (even an object that is being di.-
played on the screen can be a prototype).

All data and methods are stored in “slots” (some-
times called fields or instance variables). Slots that
are not overridden by a particular instance inheri:
their values from their prototypes. There is no"dis-
tinction between data and method slots in Garnet.
Any slot can hold any type of value, and in Com-
mon Lisp a function is just a type of value. Slot
1ames can contain any number of printing charac-
ters (e.g, left, interim—selected, obj-
over).

Ap instance can also add any number of new slots.
Unlike conventional class-instance models, this
means that the number of slots in each object is
variable - =ach object can have a different number
of local slots, depending on which properties it
wants to inherit defauits for and which it wants
to override. Moreover, the number of slots of an
object can even change dynamically. Slots can be
explicitly removed from objects at any time. Also,
if a program sets the value of a siot that does not
exist, then the slot is created automatically. If a
program asks for the value of a slot that does not
exist, NIL is returned (there is a function that tests

whether a slot exists). All slots are untyped.

The efficiency of Gamet’s object system is actually
better than other class-based Lisp object systems,
such as CLOS. For example, on a Sun SPARCsta-
tion | running Allegro Common Lisp, the simplest
slot accessor function takes two- and one-half times
as long in CLOS (23.7 microseconds), than in Gar-
net (9.5 microseconds). To create an instance in
CLOS (3486 microseconds) takes about eight times
longer than in Garnet {433 microseconds).

A unique feature of the Garnet object system is
the support for structural inheritance. Objects can
be grouped into an “aggregate” object. Then this
aggregate can be used as a protctype for new ob-
jects in the same ' .y as a primitive object can
be. When an instance is made of an aggregate, Gar-

Nisual —
_omputer

net automatically creates instances of all the parts
and links them together in the appropnate maaner.
Edits made to the prototype are automatically re-
flected in all instances. For example, if objects are
added or removed from the prototype, the same
edit is made to all the instances of that prototype
{see Fig. 6).

Tz function that adds a new object to an aggre-
gate takes an optional locator argument (e.g., front,
back, before obj, after obj) to determine where 10
insert the object with respect to the other children
of that aggregate (which is important, because the
order determines the back-to-front drawing order
and therefore which objects are covered by other
objects). After the object is inserted into the aggre-
gate, Garnet checks a special slot, which contains
a list of all the instances of the aggregate. For each
instance of the aggregate, Garnet creates an in-
stance of the inserted object and inserts the new
instance into the instance aggregate. Instances of
the inserted object that are propagated to an aggre-
gate’s instances are also positioned using the lo-
cator argument. If the locator specified that the
added object should be inserted before or after a
child, Garnet finds the instance of this child in each
of the aggregate’s instances and then inserts an in-
stance of the added object in the appropriate spot.
When an object is removed from an aggregate,
Garnet first removes the object from the aggre-
gate’s components list, then removes instances of
the object from each of the aggregate’s instance-
components list,

b

Fig. 6a, b. Before a and after b editing a prototype.
When the prototype (shown on the left) is edited (0
change the font to italic and add a shadow, the
modifications are immediately reflected in all of the
instances (shown on the right). Note that the sizes of
the boxes chacge in b because the font width is
smaller

101

53-

— Nisual
Computer

If the programmer waants the new object to be inde-
pendent of the prototype (so that edits to the proto-
type do not affect the instance), then the built-in
copy function can be used instead of the instancing
function. The resuiting object will look the same
as ap instance, but there will not be any back point-
ers.

5.1.2 Saving and restoring objects

Another very important feature of the Garnet ob-
ject system is that there is built-in support for sav-
ing and restoring objects to the disk. A single Gar-
net function takes an in-memory or on-screen ob-
ject and writes it to a disk file in a format that
can later be read in again. If the object is an aggre-
gate, then all the parts are written to the file also.
Direct pointer links among objects are automati-
cally converted to indirect references so that no
actual pointers will be written to the disk. Con-
straints (see Sect. 5.2) are also output in an appro-
priate form.

In addition to the convenience of having saving
and restoring code provided to applications, pro-
viding a central mechanism simplifies the imple-
mentation of interactive design tools. The tools can
create whatever structures they want without hav-
ing to worry about converting these structures to
a suitable external structure, because the built-in
save-restore mechanism can write out all Garnet
objects.

Due to the tree structure of aggregates (aggre-
gates contain primitive objects and other aggre-
gates, which themselves may contain objects and
aggregates), it is economical to save them using
a tree-structured format, listing only parts and slots
that override defaults defined by the prototype.
First, the differences between each object and its
prototype are computed.' Inasmuch as an object
can add, remove, or even override the children it
inherits from its prototype, these differences may
include structural differences as well as simple
value differences. Only these differences and the
name of the prototype are needed to reconstruct
a copy of the object. If there a_ . structural differ-
ences, Garnet writes out commands that tell the
object-creation mechanism how to create addition-
al children, override existing children, or omit cer-
tain children. By writing out only the differences
rather than the complete structure of each instance,
the programmer is able to understand and change

102

the generated code more casily and the code is
shorter and more efficient.

The output file is simply the Lisp code to create
the objects. Therefore, when the code is lpaded by
an application or by an interactive design tool, the
objects will be created The prototype-instance ob-
ject system allows a tool to modify the objects in
memory, which means that it is never necessary
for the tool 1o look at or parse the gen: rated fiie.
Generated files are in exactly the same form as
the code that a programmer would write by hand
to create the same objects. Therefore, no special
mechanism is needed to read objects in again: the
standard Lisp loading function is sufficient. Neither
special formats for output, such as UIL for the
Motif toolkit, nor associated parsers, are needed.
Programmers of design tools do not need to write
code generators, as in most other systems, because
the built-in Garnet function can be used. The stan-
dard Lisp compiler can also be used to make the
generated files more efficient.

In addition, because the generated object descrip-
tions are standard Lisp using the conventional
Garmet style and functions, it is very easy for pro-
grammers to read the code to make sure that it
is correct. It is also possible to directly modify the
code using a text editor if necessary. Inasmuch as
Garnet requires no special mechanism to read the
code, the programmer is frec to make arbitrary
edits and the file will still be loadable (assuming

. the edits do not introduce errors, of course). For

example, the programmer could add or subtract
children from an aggregate, add new slots for spe-
cial processing, write complex constraints that can-
not be expressed using the design tools, and even
add or delete new objects. In addition, because the
programmer’s changes will be reflected in the n-
memory versions of the objects after the code is
loaded into a design tool, these edits will be pre-
served when the files are written out again.

Because interactive design tools are only capable
of specifying certain types of objects and behaviors,
there are cases when a programmer will need to
edit the code created by the design tool in order
to achieve the desired functionality for an interface.
Thus, 1t is important that the programmer be able
to modify the generated code and still be able to
operate on the objects and behavior using the de-
sign tools. Garnet's ability to create code in the
language used by the programmer without having
to resort to special or binary representations is
therefore an important advantage when creating

.54

iy

new interactive design tools. Because the code can
be compiled, there is also no efficiency penalty for
this.

Both Lapidary’s and Gilt's implementation are
substantially simplified by this save-restore facility.
When cither tool wants to save an object, behavior,
or window to disk, they first write some standard
header information to the file, and then call the
Garnet object-writing function on the entire win-
dow. As long as programmers do not change the
header (which they have no reason to do), both
tools can read a file simply by using the Lisp
“load™ function. '

Another advantage of the simple format for the
generated code is that it is possible to write compil-
ers that optimize the generated objects, for example
by removing extraneous slots or constraints that
a tool may have inserted for its own use. This can
improve the efficiency of the applications that use
the objects.

'5.1.3 Uses of the prototype-instance modet in de-
sign tools

The use of a prototype-instance model has a large
number of significant advantages for interactive de-
sign tools.

5.1.3.1 Dynamic editing. In conventional class-in- -

stance object systems, it is very expensive to modify
classes. If there are existing instances of the classes
in memory, then modification is often not even al-
lowed (for exampie in C+ +). Instead, the in-
stances must be destroyed, classes recompiled, and
then new instances must be created. Even in sys-
tems that permit class evolution, the data struc-
tures representing the instances are semi-compiled
 and must be redone if classes are allowed to change.
Thus, something as simple as adding a new instance
variable to all objects in a class while the objects
are being viewed is either very expensive or impos-
sible in most systems. This makes it very difficult
to create an editor that will allow dynamic proto-
typing and editing of objects and their structure.

The dynamic editing capabilities of the Gamet pro-
totype-instance model clearly makes it ideal for
prototyping syste: .. An interactive design tool can
simply provide mechanisms {or the user to add and
remove slots, objects, and properties from objects.
if the user happens to modify a prototype object,
then, Garnet insures that all instances are updated

Nisual —
Computer

appropriacely. The very same editing operations
can be used on prototypes and on instances, both
from the user’s and the tool implementer’s point
of view, and Garnet takes care of the bookkeep-
ing.

As an example, Lapidary uses the prototype-in-
stance model to allow users to dynamically create
and modify objects. Initially, objects are created
with only a basic set of graphical slots, methods,
and components. Users can then attach constraints
and behaviors and add or subtract objects. If the
components of a prototype are modified, the modi-
fications will be immediately propagated to all in-
stances, thus allowing the user to immediately see
the new look in context. This form of structural
inheritance is unique among intorface builders. For
example, users can make the cdits shown in Fig. §
using Lapidary.

5.1.3.2 Creation of prototypes. The lack of dis-
tinction between prototypes and instances aiso
means that interactive design tools can easily pro-
vide a mechanism for users to make libraries of
objects. The tool can allow the user to select an
object (which, of course, may be an aggregate of
other objects) and use that object as a prototype.
The prototypes might be collected together in a
window to form a “style sheet.” The user can then
use instances of the prototype in application win-
dows. If the user decides that the prototype does
not look or operate correctly, the prototype can
be edited (which will also change all the instances)
so the user can see immediately how all the in-
stances will look in context. In a similar way, a
palette for the final program can be created interac-
tively in the design tool. The paletie will contain
prototype objects created using the design tool and
the program will only need to create an instance
of the appropriate one when the end user wants
a new object.

[t is this ability to create prototypes on the fly
that allows the Lapidary tool to creaie application-
specific graphical objecis. If the user is designing
a graph editor with nodes and arcs, some graphical
objects can be drawn to represent a node, these
can be collected into an aggregate, and then that
aggregate used as a prototype for all the nodes.
The application program then only needs to create
instances of the node prototype, and does not need
to know anything about its internal graphical ap-
pearance or structure (it might be a single rectangle
or a whole collection of objects).

103

55-

— Visual
omputer

5.1.3.3 Adding new slots. The ability to add new
slots to existing objects is quite useful for interac-
tive design tools. For example, the tool might want
to store information about how the objects were
created, determine how the object’s properties were
set, or save the previous values of properties to
support undo. Even if the objects are primitive ob-
jects, such as rectangles and text, or instances of
predefined widgets from a library, the tool can.sim-
ply create new slots in the objects using slot names
ihat are meaningful to the tool. Because messages
are simply function values in siots, new messages
can just as easily be added to pre-existing objects.
No new “classes” are needed. Thus, a design tool
can add tool-specific methods, such as a custom
destroy method.

These new slots that the tool creates can be written
out to the disk with the rest of the objects. This
is very usefui if the siots coniain status or identifica-
tion information that the tool needs when reading
the objects in again 2. Alternatively, the tool imple-
menter can declare that these extra slots should
not be written out with the objects.

Lapidary makes use of the ability to add and delete
slots both to support itself and to support behav-
iors added to the objects. For example, it adds
the objover slot to feedback objects so that they
can indirectly reference the object they should
highlight. Lapidary also adds slots to support indi-
rect references to objects and offsets in its position-
ing and sizing constraints. For example, to support
a constraint that aligns the left side of an obiect
with the side of another object, Lapidary adds an
objover slot to reference the other object and
a left—offset slot to reference the size of the
offset. The use of indirection through these slots
allows Lapidary to support the fine-tuning of a
constraint without having to destroy and recreate
it each time a user changes an oflset or a target
of the constraint. Before saving a set of objects,
Lapidary removes its support slots so they will not
clutter up the generated code. Similarly, Lapidary
reinstalls these slots when the objects are loaded
later.

5.1.3.4 Dynamic lcading. Another important fea-
ture of the object system is that single objects or

! [n this case, the programmer would, of course, have 10 be
careful to preserve this information if hand-editing of the gener-
_ated code was necessary

104

groups of objects can be dynamically loaded at
any time. Garnet requires that the prototype for
objects be loaded before any instances of that pro-
totype are used, but it is easy to insure that the
files that create instances automatically load the

_prototypes first, if they are not already loaded.

Dynamic loading can also be used to reduce the
memory size of applications. For example, Gilt
uses bitmap pictures to represent the widgets that
can be loaded. The first time that a particular type
of widget is needed. Gilt simply loads the prototype
and creates an instance of it. Many of the large
and complicated widgets are not needed by most
users, and so they do not need to ever be loaded.

5.2 Constrainis

Garnet provides constraints that allow program-
mers to specify relationships between objects that
are automatically maintained by a constraint
solver. The relationships expressed by constraints
may be graphical, for example, to position a check-
mark next to a set of menu items, or non-graphical,
for example, to make the selected itern in a proper-
ty menu (e.g., a line style) match the corresponding
property in the selected object. The contents of an
object’s slot can be an ordinary value, such as a
number or string, or they can be a constraint that
calculates the value. When the value of the siot
is requested, Garnet wiil automatically evaluate the
constraint and return the calculated value.

Garnet constraints are arbitrary pieces of Lisp
code. They may be thought of as functions that
take a set of slots as parameters and return a result.
Hence, they are one-way constraints. The con-
straint-solver is responsible for detecting changes
to the slots referenced by a constraint and re-evalu-
ating that constraint automatically. Both eager and
lazy algorithms for implementing the constraint
solver are presented in Vander Zanden etal
(1991).

A novel feature of Garnet is that programmers can
write constraints that indirectly reference other ob-
jects through pointer variables and that these vari-
ables can be changed under program control at
runtime. For example, suppose a checkmark
should be able to appear next to any item n a
menu. A programmer could create this behavior

- 56

by inserting the following constraint in the left
slot of checkmark:?

checkmark. leftaself-objover. right.10

The reference self. objover. right causes the
constraint solver to consuit the objover slot in
the current object (in this case, the check mark).
The constraint solver will then request the value
of the right slot in the object contained in the
slot named ob jover.

The use of pointer variables considerably simplifies
the conversion of example objects to prototypes
as weil as several other features of interactive de-
sign tools (see Sect. 5.2.1). It aiso provides the full
power of procedural abstraction in constraints.
Each constraint is equivalent to a procedure that
may be called with a new set of arguments on each
invocation. Previous constraint systems have al-
lowed regular variables, but not pointer variables
(Vander Zanden et al.- 1991). For exampic, the 10-
pixel offset could be made into a variable called
offset, but the reference objover would not
be permissable in other systems. If the programmer
wanted the 10-pixel offset to be a vanable in Gar-
pet, he could rewrite the constraint as self.
objover. right+self. offset, which would
cause the constraint solver to look for the value
of offset in the object that contained the con-
straint.

Constraints are first-class objects, just like any
other object in Garnet. A constraint object con-
tains slots that contain a pointer to the constraint’s
lisp code, the value last computed by the con-
straint, an indication of whether this value is up-to-
date, and the object and slot to which this con-
straint is attached. A design tool is free to add
other slots to this constraint object that will assist
the design tool in determining the type of this con-
straint or other relevant information. Like other
objects, constraints may serve as prototypes. An
instance of a constraint will inherit the pointer to
its function, thus allowing multiple constraints to
use the same piece of code.

Representing constraints as objects and allowing
pointer variables simplifies the integration of con-
straints with the prototype-instance system. When
Garnet makes an instance of a prototype, it exam-

1 For the sake of readability, we are expressing constraints
in a more conventional infix notation rather than Lisp’s prefix
notation. In Garnet, this constraint would actually be written
as {(+(gv : self :objover :right) 10) where gv stands
for get vaiue

“NVisual —
Computer

ines each of the slots in the prototype, and if a
slot contains a constraint, places an instance of
that constraint in the corresponding stot of the new
instance object.

If the prototype is an aggregate, Garnet creates
pointers in the aggregate to each child and back-
pointers in each child to the aggregate. For exam-
ple, the thermometer aggregate in Fig. 7 has point-
ers to its buldb, shaft, and mercury stored in the
slots bulb, shaft, and mercury respectively.
Similarly, each of the thermometer’s children have
a pointer to the thermometer stored in their par-
ent slot. Constraints in any object in an aggregate
can therefore reach any other object by traversing
the aggregate hierarchy using the appropnate set
of pointers. For example, the mercury needs to
know the position and size of the shalft in order
to position itself in the shaft. [t can access these
values through the parent and shaft pointers
{¢.g., msTcury. left=

self. parent. shaft. left).

By referencing other objects in the aggregate hier-

archy indirectly via pointers, the programmer can
ensure that the constraints in instances of proto-
types will automatically reference the appropriate
information. Thus, Garnet is able to implement the
instancing of aggregate objects simply by creating
instances of each of the components of the aggre-
gate hierarchy, creating instances of constraints in
constrained slots and creating the appropriate set
of pointers. It is not necessary to modify the code
of the constraints themselves.

5.2.1 Advantages of constraints

Constraints are appealing, because they declarati-
vely describe relationships between a program'’s en-
tities. A constraint solver automatically keeps the
constraints satistied, thus propagating changed
data to the appropriate locations. In constructing
interactive design tools, constraints can be used
to specify the graphical layout of the tools’ objects
and the dynamic graphical behavior of these ob-
jects. In addition, they can be used to support many
of the services that these tools provide. Finally,
the constraint systemn makes 1t easy for interactive
design tools to provide constraints to the interface
designers. For example, Lapidary allows users to
attach constraints to objects that graphically posi-
tion the objects or control their dynamic behavior.

105

57-

-

— Nisual
Compater

The support provided by constraints is covered in
the following sections.

5.2.1.1 Prototypes. lInteractive design tools can
use pointer variabies in constraints to easily con-
vert example objects to prototypical objects.
Whenever a designer attaches a constraint to an
example object, the design tool can use pointer
variables to indirectly reference the objects to
which this object is constrained. Instances of this
example object will inherit these constraints, and
by setting the pointer variables appropriately, the
instances can be constrained to other sets of ob-
jects. Thus, pointer variables automate part of the
process of converting the example object 10 a pro-
totype.
However, this conversion is not complete until the
design tool has identified which slots in the exam-
ple should be parameters that are set at instance-
creation time. Part of this identification can be au-
tomatically performed when the designer saves the
object. The design tool can check to see whether
there are any slots in the saved object which refer-
ence objects that are not being saved. If so, the
design tool can infer that these slots point to exam-
ple objects and replace these example objects with
null pointers. This process converts the pointer
variables to parameters, because instances of this
prototype can instantiate the pointer slots with the
appropnate objects and exhibit the same behavior
or layout relationship that the prototype did. For
example in Lapidary, suppose the designer has
drawn the two boxes and arrow shown on the
screen in Figure 8a. The designer wants arrows
that are used in the application to be able to attach
themselves to the sides of objects, so the designer
attaches the ends of the arrow to the sides of the
two boxes using alignment constraints (Fig. 8b).
Internally, Lapidary represents the constraints us-
ing pointer variables:
arrow:

endptl: self. from—ob).right-center

endpt2: self. to-obj. left-center

from-obj: boxl
to—obj: box2

If the designer then saves the arrow without saving
the boxes, Lapidary notices that the slots from—
obj and to—obj do not point 1o objects being
saved, infers that these slots point to example ob-
jects, and replaces their values with null pointers.
When an application creates an instance of this
arrow, it can instantiate the from—obj and to-

106

obj slots with the appropriate objects and the in-
stance arrow will attach itself to the desired objects
in the correct way.

Other parameters, such as the label of a labeled
box cannot be automatically identified without as-
sistance from the designer. However, once the de-
signer identifies these slots, the design tool can con-
struct a constraint that retrieves the value of the
siot from the root of the prototype. This constraint
will use backpointers in the aggregate hierarchy
to climb from the object that owns the slot to the
top-level object in the prototype’s aggregate hierar-
chy. For example, suppose the color of the mercury
in the thermometer in Fig. 7 should be a parameter.
Once the designer identifies the color as a parame-
ter, the design tool can insert the following con-
straint into the color slot for the bulb and mercury
objects:

colorz=self. parent.color

This constraint goes to the parent of either the
bulb or mercury object, which is the thermometer,
and retrieves the color set by the programmer.

5.2.1.2 Spreadsheet tools. Spreadsheets have
proven to be a popular design interactive design
tool (Wilde and Lewis 1990; Myers 1991a). One
of the main difficulties in constructing a spread-
sheet is building a constraint solvzr for the spread-
sheet’s equations. Garnet automatically provides
such a constraint solver and a powerfu! set of con-
straints that will be adequate for most spreadsheet
interface-design tools.

Of course, C32 uses the built-in constraint solver
to evaluate the constraints that the user creates.
In addition, C32 makes extensive use of constraints
in its own implementation. For example, each
value display has a constraint that ties it to the
actual value in the associated object. Therefore. if
the value changes as a result of user interaction
with the interface, the ceil's value will be automati-
cally updated. Similarly, the visibility of the icons
that show whether the slot is inherited and whether
the slot contains a constraint is controiled by con-
straints to the actual cells. The font of the cell lubel
and value is also constrained to the inheritance
flag, so that italics is used if the slot is inherited.

5.2.1.3 Demonstration. Constraints help support
several forms of demonstrational programming

-58

L

‘aght column. A designer can demonstrate this behavior by using

Nisual —
Computer

Fig. 7. A thermometer and its aggregate hicrarchy. References
from one object to another use paths through the hierarchy.
Obijects that are part of the thermometer have programmer-
assigned names, such as bulb and mercury, and references (o
the thermometer from a part use the standard parent slot

Fig. 8a, b. The designer wants to create a prototype arrow
where one endpoint should be connected to the right side of a
box and the other endpoint should be connected 10 the left side
of a box. To do this, the designer draws the arrow and :two
boxes a and uses a line-constraint menu to attach the endpoints
of the arrow to the example boxes b. When the arrow is saved,
the references to the boxes in the arrow’s constraints will be
replaced with null pointers, thus converting the example arrow
to a prototype

Fig. 9. A menu that displays selections by moving them to the

constraints to place an unselected item in the left column and a
selected item in the right column. Lapidary will notice that
different constraints control the position of a selected and
unselected item's left side, and generate code to select the
appropriate constraint based on the item's selection status

Baskst Wea

8b

n-offset @ R
y-offset @ 71

107

59 -

—"NVisual
omputer

(Myers 1990b). In demonstrational programming,
the designer manipulates objects under the obser-
vation of the design tool. The design tool then tries
to infer the general form of the behavior from this
specific example. Peridot (Myers 1990a) and Meta-
Mouse (Maulsby and Witten 1989) are two other
examples of demonstrational systems.

A simple form of demonstrational programming
is one in which a designer specifies a “before” state
for an obiject, edits it, and presents the design tool
with an “after” state. For example, a “3-D” button
might be in one position normally, and move when
the mouse is pressed on it. To support this, the
design tool would allow the user to draw the two
states. It would then figure out differences, deter-
mine how to implement the changes, and generalize
the behavior so that it applies to any of a related
group of objects, such as a set of items in 2 menu.

If the designer edits the objects using coustraints,
then the differences are fairly easy to determine. The
-design tool can check for differences in constraints
on the same siots, differences in offsets or scaling
factors, or differences in pointer variables. Based
on these differences, the design tool can synthesize
a constraint that incorporates the before and after
values and makes the selection based on the value
of an indicator, such as a Boolean variable.

For example, Lapidary supports this form of de-
monstrational programming by creating a copy of
the object to be demonstrated ard allowing the
designer to edit the copy. When the designer is
finished, Lapidary compares slots in the copy (the
“after” state) with slots in the original (the “before ™
state). For any siots that are different, Lapidary
creates a constraint that simply chooses between
the values, based on a controlling parameter.

For instance, suppose a designer wanted to demon-
strate that itemis should move to the right column
of the menu in Fig. 9 when the user clicks on them.
This behavior could be demonstrated by selecting
an itemn in the left column and declaring that the
item is in its “before” state. The designer could
then change the constraint on the item’s 1ef't slot,
so that the item is now positioned in the right col-
umn. The before and after states would look as

follows:

Before After
left: self. objover. self.objover.
left right -
self.width
objover: left-column right-column

108

Because the “before™ and “after” values of the
objover and left slots differ in this example,
Lapidary synthesizes constraints that choose be-
tween the differing values, based on the value of
a variable, such as selected. For example, the
constraints might be:

if self. selected

then right—column else left—column
left: if self. selected

then self. objover. right — self.width
else self. objover. left

objover:

Lapidary then creates instances of these new con-
straints and installs them in the other items in the
menu, thus generalizing the behavior from the ex-
ample item to all items in the menu.

The constraints in Garnet can support more gener-
al forms of demonstrational programming as well.
To guess which kinds of layouts the user is trying
to achieve, as in Peridot (Myers 1990a), the creator
of a design tool can derive the set of constraints
that enforce the desired types of layouts. These con-
straints will comprise a formal, rigorous basis for
the demonstrational system. Whea a user manipu-
lates objects, the design tool can use various met-
rics to measure how well the various constraints
fit the demonstrated behavior and choose those
constraints that best fit the behavior. The advan-
tage of using constraints is that quantitative met-
rics can be developed that rigorously assess the
closeness with which various constraints match a
demonstrated behavior. Because the demonstra-
tional system can explain its inferences in terms
of the metric, the designer of the demonstrational
system can improve the sysiem's inferences by
modifying the metrics, based on feedback received
from users.

5.2.1.4 Annotation of specifications. Some sys-
tems, such as Jade and Chisel (Singh and Green
1989), produce a rough cut of an interface from
a textual specification. An interactive design tool
can then be used to polish the generated interface,
for example, by adding decorations or reposition-
ing objects. If the interface designer later changes
the textual specification, the changes made by the
design tool should be remembered. Thus, the de-
sign tool should annotate the textual specification
in some fashion.

In a Garnet-generated design tool, constraints are
used when adding decorations or repositioning ob-
jects. For example, if a rectangle is drawn that en-

closes a group of radio buttons, it will typically
be attached to the radio button group using con-
straints. In turn, the radio buttons are tied to var-
ious efitities in the textual specification. By keeping
track of the objects to which constraints are ap-
plied, the tool can determine to which entities in
the textual specification the decorations apply.
Thus, even if a designer changes the underlying
textual specification, the interactive design tool can
still remember the graphical changes that were
made and faithfully reproduce them when the tex-
tual specification is run through the interface gen-
erator. For example, the rectangle in the above ex-
ample would be constrained to surround the set
of radio buttons, so the rectangle will grow au-
tomatically if new items are added to the set.

Jade takes advantage of Garnet's annotation capa-
bilities when a graphics artist uses a direct manipu-
lation editor to either change the layout or add
deccrations to a Jadecreated dialog box. To anno-
tate the textual specification, Jade keeps track of
which objects are being repositioned or decorated
and then maps these objects to their underlying
entities in the textual specification. When the
graphics artist is satisfied and saves the dialog box,
Jade uses Gamet’s writing facility to save the de-
corations, constraints used to reposition the ob-
jects, and references to the appropriate items in
the textual specification. ‘

5.2.1.5 Rule-based systems. Many systems that
generate interfaces from textual specifications use
rules in order to layout the various scenes in the
interface (Vander Zanden and Myers [990; Wiecha
et al. 1989; Bennett et al. 1989). One way to imple-
ment the rules is to have them generate a set of
constraints from a prototypical set of constraints.
The use of pointer variables makes it easier for
rules to create instances of these constraints, be-
cause the pointer variables can be made to point
to the object or set of objects to which a rule is
applied and the constraints will automaticaily en-
force the rule. For example, a rule that places a
set of buttons at the top right of another group
of buttons might be expressed as:

at-top-right-rule:
left: seif.buttons.right+10
top: self. buttons. top

A tool could apply this rule by generating instances
of these constraints in the appropriate slots in a
button group and setting the buttons pointer.

— Nisual —
R.ompuer

uses rules similar to this one in laying out objects
in a dialog box.

5.3 Automatic graphical update

The graphical object system in Garnet is different
from many other systems in two respects. First,
it uses a retained object model that allows it to
automatically update the screen when objects
change or a part of the window becomes uncov-
ered. Most other toolkits force the application to
manually handle redispiay by determining which
objects are changed and which objects they overiap
and then issuing erase and draw commands that
cause the display to be appropriately updated. A
second difference from other systems is that the
display system is integrated with the constraint sys-
tem, so the constraint system automatically notifies
the display system whenever an object changes.
The retained object model is semewhat similar to
a dispfay list in that each graphical object on the
screen corresponds to an object in memory. How-
ever, the objects are at a higher level than the ob-
jects in a display list, because they are integrated
with the constraint system, can be accessed by an
application, and are used by Garnet to determine
which portions of the display to update. For exam-
ple, to move a rectangle 10 a new position, the
application sets the left and top slots of the
object and Garnet automatically takes care of eras-
ing the object at its old position and drawing it
at the new position. In addition, the constraint sys-
tem propagates the changes to other objects in the
system, and these objects, as well as any other ob-
Jects that overlap the changed objects, are also re-
drawn. If the window manager needs part of the
window to be redrawn (for example, because the
user has uncovered it), Garnet can handle this au-
tomatically without involving the application.

The algorithm used by Garnet always tries to mini-
mize the number of objects that are erased and
redrawn, rather than simply redrawing the entire
window, which can be important for complex
scenes. Garnet keeps track of ail objects changed
by either the application or the constraint system.
When asked to update the screen, it finds the
bounding rectangles of the changed objects in their
old and new positions and then redraws all objects
that intersect those regions. Clipping regions,
which are supported by the underlying window
managers, are used so that other objects will not

109

61 -

— Nisual
“ompater

be affected. As an example of the resulting per.or-
mance, moving one object through a window con-
taining 200 other objects takes 14.9 milliseconds
per move on a Sun SPARCStation (67 moves per
second) rather than the 188 milliseconds (5.32
moves per second) it would take if Garnet simply
redrew all the objects in the window each time.
The advantage of the retained object mode! for
tool builders is that they do not have to have to
build the elaborate data structures required to re-
fresh the screen and they do not have 1o handle
the complex task of interfacing the constraint
solver with the display manager. When a property
of an object should change (e.g.., to have a new
color or position), the tool can simply set the ap-
propriate slot of the object. If other abjects are
affected by the change, their slots will be automati-
cally changed as well. If an object should be de-
leted, it can simply be removed from the window’s
list of objects. Garnet handles the rest.)
Another advantage is that often tools do not need
to create their own representation of the data. Each
window contains a list of the objects in it and appli-
cations are free to add their own slots to objects
to hold any necessary extra information (as de-
scribed above in Sect. 5.1.3.3). Therefore, the win-

dow’s object list can often be used by applications

as their description of the current state. All the
application-specific slots will be written out au-
tomatically to the file along with the standard
graphical slots.

5.4 Behaviors

In Garnet, the graphical objects do not respond
to input events. Instead, separate objects, called
interactor objects, handle all input (Myers 1989b;
Myers 1990c¢). The interactors encapsulate the
common interactive behaviors found in direct ma-
nipulation interfaces. Each type of interactor han-
dles a different kind of behavior. Currently, the
interactor types are:

to choose one or more items from
a set or for a single, stand-alone
button. This interactor can be
used for menus, radio buttons,
and making selection “handles™
appear over objects in a graphics
editor.

Menu—
Interactor:

to move or change the size of an
object or one of a set of objects
using the mouse. This interactor
can be used for one-dimensional
or two-dimensional scroll bars,
horizontal and vertical gauges,
and for moving or growing appli-
cation objects in a graphics edi-
tor.

to enter one, two, or an arbitrary
number of new points using the
mouse, for example for creating
new lines or rectangles in an edi-
tor.

to calculate the angle that the
mouse moves around some point.
This can be used for circular
gauges or for rotating objects.

to get all of the points the mouse
goes through between start and
end events, as is needed for free-
hand drawing. '
Text-String- o input a small (optionally multi-
Interactor: line) string of text.

Each interactor is parameterized in various ways,
so the programmer can control the mouse or key-
board events that eause it to start and stop as well
as the optional application procedures to be called
on completion. The most significant parameters,
however, are the objects that are used as the places
where the interactor should operate and the (op-
tional) objects that will handle feedback. For exam-
ple, the programmer might create a set of text ob-
jects to be the domain of selection in a menu and
a black XOR rectangle to be the feedback. Each
type of interactor has a well-defined protocol with
which it controls the graphics. This protocol is ex-
plained in depth in (Myers 1990c).

The interactors are first-class objects, and they can
be included in prototypes (e.g., a prototype scroll
bar). Interactors in prototypes also will be saved
to disk and read back in automatically.

Another feature of interactors is that they can be
easily turned on and off. Each interactor has an
active slot, which can contain a constraint that
determines whether the interactor should run or
not. This makes it easy for design tools to imple-
ment the “Build " vs “ Run” modes: when in build-
mode, the interactors in the interface under con-
struction are inactive, and when in run-mode, they
are active. Similarly, the interactors that handle
selection and editing for the design tool use the

Move—Grow—
Interactor:

New—Point-
interactor:

Angle—
Interactor:

Trace~
Interactor:

- 62

reverse constraint. Gilt and Lapidary use this fea-
ture to disable widgets unless the user hits the
“Run” button.

5.4.1 Advantages of interactors for writing
graphical programs .

The interactors paradigm helps programmers
create graphical programs in a number of ways.
kirst, by separating out the graphics from the be-
havior, the code of the tool itself is more modular.
Second, it makes it easier to investigate different
looks and feels. Third, because each interactor pro-
vides a high-level of built-in functionality, many
otherwise complex behaviors can be added to inter-
faces easily. For example, a common way to handle
selection is for the user to press on an object and
have “handles™ appear (see Fig. 10). When the user
presses on a handle, the object underneath moves
or changes size. This behavior can be provided in

Garnet by using a menu-intzractor with the han- -

dles as a feedback object for the selection and a
move-grow-interactor with the handles as the start-
ing position. The programmer only needs to create
instances of these two types of interactors and pro-
vide the appropriate parameters; no event loops
need to be coded and no methods need to be
written.* Also, in-place text editing is very easy
to support, simply by attaching a text-editing inter-
actor to any text string in the interface. For exam-
ple, it was easy in the Gilt interface builder to sup-
port editing of the menu and button labels directly
in the graphics window using a text-interactor
(rather than requiring the new labels to be entered
in a property sheet). The sizes of the graphics sur-
rounding the label are automatically adjusted as
letters are typed, due to the constraints built into
the widgets (for example, the rectangles around a
labeled-button will expand and shrink).

Fourth, the interactors package supports dragging
objects among windows in the same way that they
are moved inside a singte window. This can be used
to move or copy objects from one window to an-
other rather than using the more clumsy cut-and-
paste style.

Fifth, the interactors package supports the win-
dow mranager cut bulier to allow cusy copyig ol
text from one application to another. Extensions
to support copying of graphics are planned.

* However, see Sect. 5.6, where a widget that handles this au-
tomatically 15 explained

Nisual —
Computer

§.4.2 -~ dvantages of interactors for IDTs

In addition to the general advantages of interac-
tors, there is a particular advantage for the designer

. of an interactive design tool. If the tool wants to

allow the user to define the interactive behaviors
of the objects being designed, it must first have
a model of those behaviors. In many systems, this
model consists of a set of pre-defined interaction
techniques that are tightly bundled with the graph-
ics, making it difficult, if not impossible, to attach
behaviors to application objects. In contrast, the
interactors model separates behavior from the
graphics, so that behaviors may be attached to wid-
get objects (e.g., menus, scroll bars, buttons) as well
as application objects. Indeed, several of the inter-
actors, -such as the move-grow, new-point, and
trace interactors, were specifically designed for ap-
plication objects, while the menu, text-string, and
angle interactors all have application uses (the
menu interactor, for example, can be used to select
one or more application objects).

The interactors model also provides a rich set of
parameters that allow designers to specify a wide
variety of behaviors without having to drop down
to the programming-language level. Because there
are only six types of interactors and the parameters
are well-defined, an interctive design tool can easily
provide dialog boxes for the user to fill in the de-
sired values or can attempt to infer the behavior
and its parameters from the user's actions. Thus,
the interactors make it much easier to implement
interactive design tools that allow a designer to
specify the behavior of application objects as well
as the behavior of new widget objects.

Lapidary is a good example of a design tool that
takes advantage of these features of interactors. It
provides dialog boxes for each of the interactors
and allows the user to attach graphics to an inter-
actor by selecting graphical objects and pointing
to the a»propnate graphical parameter in the dia-
log box (e.g., the start—where parameter, which
controls which objects the interactor operates on,
or the interim and final feedback parameters, which
control what type of feedback the user sees as the
behavior is executing). For example, if the user is
creating o new kind of menw, he can pull ap the
choice-of-items dialog box (see Fig. 3), create an
instance of a menu interactor, and attach it to the
graphics that the user has created. The behavior
can then be interactively tested by putting Lapid-
ary in “test” mode.

111

63 -

- <

O

LAY 4.-
,~-q“<¢f PRy

'.-\J-.L Jetiwa .

t Selection .1

v Times
“ Helvetica
\ Courier

+ Geneva

11b

ok | apply | camcel|
ENOWE-AS (keyword) : WIL
‘SELECT-PUNCTION: ¥TL

DIRECYTON:
V-SPACD: S
B-SPACING: §

PIXZD-¥IUTH-P: T
PIXKD-BEIGHY-9: NIL
S-ALIGN: :LEFT
RANK-WAROIN: MIL
PIIEL-MAROIN: ¥IL
DEOEND S ¢
‘BUSTON-¥IDTE: 12}
TEXT-arrSET: 5 R ‘ '
un'-oy-nm-r: m

ITTONS: (“Times® “Belvetica® "Courier* ‘Gensva”)

mcn;ll!' - TTENS : NIL

FOREGROUND-cOLOR : (8)

Fig. 10. Standard butlt-in Garnet graphics-selection
gadget. [t displays control handles around the selected
object or abjects. Pressing on a object with the left
button sclects it. If the user presses with shift-left or the
middie mouse button, then other objects can be added or
removed {rom the sclection set. Pressing on a white
handle moves the object, and pressing on a black one
changes the object’s siz¢. When a linc is selected. only
three control poiats are shown: the black ones change
the end point and the white one moves the line, kecping
the same length and siope. If multiple objects arc sclccted.
then they all move or change size together

Fig. 11a, b. The property sheet a that appears for a radio
button panel b in Gilt. The aggrelist control slots, such as
DIRECTION and V-SPACING can be changed dynamically and
the radio buttons will re-orient automatically :

Lapidary exploits interactors in other ways as well.
Internally, interactors make it much easier to
create all of Lapidary’s complicated behaviors,
such as the multiple ways of selecting objects and
providing feedback or the different ways of select-
ing constraints in_the iconic constraint menus. Ex-
ternally, Lapidary uses the interactors to separate
the editing of graphics and behaviors. Users creat-
ing-objects from scratch can concentrate on defin-
ing their graphics and behaviors separately and in-
tegrating them when they are finished. Further-
more, they can later edit either the behaviors or
graphics, thus modifying either the look or the feel
without touching the other. Instances of widgets
from prototype libraries can be similarly edited.
This separation allows a user to rapidly prototype
different looks-and-feels.

Currently, we are investigating ways to infer the
parameters of the interactors from a demonstration
of the behavior, as in the earlier Peridot system
(Myers 1988). Because there are only six possible
behaviors and a small number of parameters, the

112

inferences about the meaning of the user’s demon-
stration have a good chance of being correct.

5.5 Automatic layout

There are many times when elements of a user in-
terface need to be displayed in a regular fashion.
For example, the items in 4 menu are often evenly
spaced in a column. Garnet provides various spe-
cial forms of aggregates that automatically lay out
their components. Interactive design tools can easi-
ly provide automatic layout to users by simply
creating instances of these special aggregates and
allowing users to then add the components.

One such aggregate, called an “aggrelist,” will ar-
range the elements in a row, column, or table. The
programmer can specify the spacing of the elements
and whether they are centered or justified to the
left, right top, or bottom. Each element can be indi-
vidually created by a program and added to the
aggregate. Alternatively, a single prototype can be

supplied along with a list of strings or other values
and the aggregate will automatically create an in-
stance of the prototype for each string or value.
Aggrelists are used throughout the Garnet widget
set to control the layout of menus and buttons.
Because the layout parameters to an aggrelist can
be changed dynamically (e.g., to change the ele-
ments to be centered or left-justified or to put them
it multipie rows or columns), this allows the toolkit
user to customize the layout of the elements. For
example, the Gilt interface builder only needs to
set the value of the orientation field of an aggrelist
to change a set of radio buttons from horizontal
to vertical. No special code is needed in Gilt to
adjust the layout. The controlling slots are pro-
vided to the user as fields in a property sheet (see
Fig. 11). Aggrelists are also helpful in the C32 im-
plementation, where they are used to lay out the
fields in columns.

Another special type of aggregate will arrange the
elements in a tree or graph. A default layout algo-
rithm is supplied, but the programmer can supply
" a different one if desired. There are aiso default
prototypes for graphics for the nodes and arcs, but
again the programmer can supply different proto-

types.

5.6 Widgets

The Garnet widget set contains many widgets that
help create interactive programs, such as visual in-
teractive design tools. It contains the standard wid-
gets found in other toolkits, such as radio buttons,
check boxes, scroll bars, sliders, text-entry fields,
and various forms of fixed, pop-up, and pull-down
menus. These come in two varieties: the Garnet
look-and-feel shown in Fig. 1 and a Motif iook-
and-feel (Fig. 12). These can be used to make the
dialog boxes and main command menus of an edi-
tor. There are also widgets to pop-up windows with
error messages, confirmation requests, and
prompts. [t is interesting to note that implementing
the Motif widget set (which does not use any of
the Motif code that implements the Xtk C version)
took only two man-weeks on top of the Garnet
toolkit intrinsics.

In addition, however, the Garnet widget set also
contains many high-level widgets that can help
with the insides of the design tool or end-applica-
tion windows. For example, one gadget supplies

L% TP —
KA !S‘llh&
omputer

a scrolling window facility that displays horizontal
and vertical scroll bars and automatically handles
refreshing parts that are scrolled onto the screen.
Another special Garnet widget supports selection
of graphical objects. If the programmer creates an
instance of a multiple—selection object in
a window, then any of the ohjects in_the window
can be selected using the mouse and selection han-
dles will appear around them (see Fig. 10). The ob-
jects then can be moved or changed in size. All
this functionality is supplied by the multiple—
selection widget, and the programmer only has
to make sure that the objects to be edited under-
stand the standard protocol so they can be modi-
fied. This widget is used extensively by Gilt.
Another useful widget for some design tools is a
property sheet, which shows labels and current
values (see Fig. 11). Each label is usually the slot
name of the field of the object that specifies the
property and the value is usually a textual repre-
sentation of the value. However, the property-sheet
widget allows an arbitrary widget to be used as -
the value, For example, in Fig. 11, a special widget
is used for the DIRECTION slot, which allows the
user to select one of a set of values with the mouse,
and the FONT property contains an icon, which
pops up a font-selection dialog box {which itself
was created using Giit). ’ :
An interesting feature of the Garnet system is that
the built-in widgets can be easily used in interactive
design tools even though they were hand-coded”
without any thought for their use in this way. The
ability to dynamically load Garnet objects and
dynamically change their properties makes any
Garnet object usable in design tools. For example,
the widgets displayed by Gilt are simply those that
were already in the Garnet widget set. We did not
have 10 create new widgets for use by Giit.
Lapidary takes advantage of Garnet’s button and
type-in widgets in constructing its interactor dialog
boxes, main editor menu, and iconic constraint
menus. It also extensively uses the error gadgets
to inform users of various mistakes. In the future,
we plan to integrate the property-sheet widgets
into Lapidary in order to allow the user to edit
non-graphical properties of an object. Lapidary
does not use the multiple—selection widget,
because it implements a more complex selection
model. For example, by using different keyboard
keys and mouse buttons, the user can select the
aggregate of the selected object or select the object
hidden underneath the object.

113

6S -

— Nisual

Computer

Finally, the C32 window uses scrol} bars and the
scrolling-window widget. Of course, the menus and
buttons are Garnet widgets. The vaiue of each slot
uses a scrollable-text field widget (so if the value
is too large, it can be scrolled left and right).

5.7 Other toolkit features

In addition to those discussed above, the Garnet
system also provides a few other features that make
it easier to build interactive design tools.

First, the object-oriented graphics package and the
interactor objects hide the details of the window
manager [rom application programs. Therefore, a
programmer can create a tool that will run on dif-
ferent architectures. In addition, the interfaces
created by the users of the interactive design tools
will also run on multiple architectures.

Another feature stems from the decision to imple-
ment Garnet in Lisp. The built-in Lisp interpreter
is available 1o the tool builder so that no additional
interpreters are needed. This helps support the in-
teractive loading of objects and interactive creation
of constraints, as described above. In addition, the

114

Fig. 12 Some of the widgets with a Motif
look-and-feel implemented in Carnet

interpreter can be used to support “Run Mode,”
where the tool allows the interface to be exercised
to show how it will operate for the end user. The
tool can simply create the actual objects, con-
straints, and interactors that will be present in the
end-user interface and the Lisp interpreter allows
the interactors and constraints to cperate.

6 Future work

The Garnet project is on-going and we are con-
stantly trying to improve the toolkit and high-level
tools. Current work on the toolkit is focusing on
increasing the functionality and efficiency of the
object system and the constraints. We will also add
gesture recognition as a new primitive interactor
type, so that applications and interactive design
tools can experiment with gestural interfaces.

Most future work, however, will concentrate on
the interactive design tools themselves. The toois
described here need to be completed and released
and more functionality needs to be added. In addi-
tion, we plan to explore new forms of tools that
will allow even more of the application-specific be-

havior of objects to be specified. The emphasis will
be on specifying the behavior by demonstration
rather than through dialog boxes or hand-cod-
ing.

In addition to new specific tools, we want to look
at more comprehensive “frameworks™ for interac-
tive design tools and other interactive applications.
For example, almost all applications have a palette
of choices and a workspace window in which the
user creates instances of objects in the palette. Ob-
jects in the workspace wiadow can then be selected
and processed further. Whereas the toolkit pro-
vides primitives that make all these steps easy, tie
programmer still has to put them together. A
framework like Unidraw (Vlissides and Linton
1989) or MacApp (Schmucker 1986} would make
this easier. Thus, we will be developing cue for
Garnet. The planned framework will also support
Undo, Help, and other high-level operations.
Another focus will be on how to provide toolkit-
level support for demonstrational interfaces to
make 1t easier for design toois and applications
to implement a demonstrational interface.

7 Conclusions

By specifically designing the underlying toolkit in-
trinsics to support the insides of application win-
dows, Garnet is able to make the creation of visual
interactive design tools significantly easier than
with conventional toolkits. Features such as the
use of a prototype-instance object system, con-
straints, automatic graphical update, automatic
object saving, automatic layout, the use of interac-
tor objects, and high-level widgets that support
graphical selection, property sheets, and error re-
porting have allowed us to quickly create a variety
of innovative interactive design toois. in addition,
these tools are able to help build the application-
specific, highly-interactive graphical parts of user
interface and not just layout the widgets that go
around the main application window or in dialog
boxes.

Acknowledgeme..ts. For help with this paper, we would like 10
thank Bernita Myers and the referees.

This research was sponsored by the Avionics Lab, Wright Re-
search and Development Center, Acronautical Systems Divi-
sion (AFSC), U.S. Air Force, Wrght-Patterson AFB, OH
45433-6543 under Contract F33615-90-C-1465, Arpa Order No.
7597 The views 1d conclusions contained in this document
are those of the aithors and should not be interpreted as repre-

Visual —
Compater

seating the official policies, cither expressed or implied, of the
U.S. government.

Additional support for Garpet was supplied by Appic Com-
puter, General Electric, and NEC.

References

Barth P (1986) An object-onented approach to graphical inter-
faces. ACM Trans Graph 5(2):142-172

Bennett WE, Boies SJ. Gould JD, Greene SL, Wiecha CF (1989
Transformations on a dialog tree: rule-based mapping of
content to style. Proc ACM SIGGRAPH Symposium op
User Interface Software and Technology. Williamsburg, VA
pp 67-75

Borning A (1981) The programming language aspects of thing-
lab; a constraint-onented simulatton laboratory. ACM
Trans on Progr Lang Syst 3(4): 353~387

Borning A, Duisberg R (1986) Constraint-based tools for buiid-
ing user interfaces. ACM Trans Graph 5t4):345-374

Brown JR, Cunningham S (1989) Programming the user inter-
face: principles and exampies. John Wiiey & Sons. New
York

Buxton W, Lamb MR, Sherman D, Smith KC (1983) Towards
a comprehensive user interface management system. Pro-
ceedings SIGGRAPH'83, Detroit. Comput Graph 17(3):35-
42

Cardelli L {1988) Building user interfaces by direct manipula-
tion. Proc ACM SIGGRAPH Symposium on User Interface
Software, Banfl, pp 152-166

Chambers C, Ungar D, Lee E (1989) An efficient implementa-
uon of SELF, a dynamically-typed object-oriented language
based on prototypes. 49-70. ACM Coanference on Object-
Oriented Programming; Systems Languages and Apphica-
tions. Sigplan Notices, 24(10)

Freeman-Benson BN, Maloney 1, Borning A (1990) An incre-
mental constraint solver. Commun ACM 33(1):54-63

Hartson HR, Hix D (1989) Human-computer interface develop-
ment: concepts and systems for its management. Comput
Surv 21(1):5-92

Henderson Jr DA (1986} The trillium user interface design envi-
ronment, Human Fuctors in Computing Systems. Proc SIG-
CHI's6, Boston, pp 221-227

Heary TR, Hudson SE {1988) Using acuive data ' a UIMS
Proc ACM SIGGRAPH Symposium on User interface Soft-
ware Banfl, pp 167-178

Krasner GE, Pope ST (1988) A descr tion ol the model-view-
controller user interface paradign n the smalltalk-30 sys-
tem] Object Oriented Progr 1(3): 2049

Lieberman H (1986} Using prototypical objects to implement
shared behavior in object oniented systems. ACM Confer-
ence on Object-Oriented Programaung; Systems Languages
and Applications. Sigptan Notices 21t11):214- 223

Linton MA, Viissides JM, Calder PR (1989) Composmg user
interfaces with InterViews IEEE Comput 22(2) 8-22

Maulsby DL. Witten IH (1986} inducing procedures 10 a direct-
manipuiano.. environment. Human Factors in Computing
Systems. Proc SIGCHI'89, Ausun, pp 57-62

McCormack J, Asentc P (1988) An overview of the X toolkst.
Proceedings of the ACM SIGGRAPH Symposium on User
Interface Software, Banfl, pp 36-55

Myers BA (1988) Creating user interfaces by demonstration.
Acadcrmc Press, Boston

115

67 -

¥ . .
2N -. e
‘\ Ji s io w-

Myers BA (1989a) User interface tools: introduction and sur-
vey. IEEE Software 6(1):15-23

Myers BA (1989b) Encapsulating interactive behaviors. Human
Factors in Computing Systems. Proc SIGCH!I'8%, Austin,
pp 319-324

Myers BA, Vander Zanden B, Dannenberg RB (1989) Creating
graphical interactive application objects by demonstration.
Proc ACM SIGGRAPH Symposium on User [nterface Soft-
ware and Technology, Williamsburg, pp 95-104

Myers BA (1990a) Creating user interfaces using programming-
by-example, visual programming, and constraints. ACM
Trans Progr Lang Syst, 12(2):143-177

Myers BA (1990b) Demonstrational interfaces: a step beyond
direct manipulation. Tech Rep CMU-.CS-90-162, Carnegie
Mellon University Computer Science Department

Myers BA (1990c) A new model fo. handling input. ACM Trans
Inf Syst 8(3):289-320

Myers BA, Giuse DA, Dannenberg RB, Vander Zanden B, Kos-
bie DS, Pervin E, Mickish A, Marchat P (1990} Garnet:
Comprehensive support for a graphical, highly-interactive
user interfaces. IEEE Computer 23(11):71-85

Myers BA (1991a) Graphical techniques in a spreadsheet for
specifying user interfaces. Human Factors in Computing
Systems. Proc SIGCHI'91, New Orleans, pp 243-249

Myers BA (1991b) Separating application code from toolkits:
climinating the spaghetti of call-backs. Proc ACM SIG-
GRAPH Symposium on User Interface Software, Hilton
Head

Myers BA, Giuse D, Dannenberg RB,Vander Zanden B, Kosbie
D, Marchal P, Pervin E, Mickish A, Kolojejchick JA (1991)
The Garnet Toolkit reference manuals: support for highly-
interactive, graphical user interfaces in Lisp. Tech Rep,
CMU-CS-90-117-R, Carnegie Mcllon University Computer
Scieace Department

Schmucker KJ (1986) MacApp: an application [ramework. Byte
11(8):189-193

Singh G, Green M (1988) Designing the interface designer's
interface. Proc ACM SIGGRAPH Symposium on User In-
terface Software, Baafl, pp 109-116

Singh G, Green M {1989) A high-level user interface manage-
ment system. Human Factors in Computing Systems. Pro-
ceedings SIGCHI'89, Austin, pp 133-138

Sutherland 1E (1963) SketchPad: a man-machine graphicai
communication system. AFIPS Spring Jomt Computer Con-
ference 23:329-346

Szekely P (1990) Template-based mapping of application data
to interactive displays. Proc ACM SIGGRAPH Symposium
on User Interface Software, Snowbird, pp {-9

Vander Zanden B (1989 Constraint grammars - a ncw modcl
for specifying graphical applications. tluman Factors n
Computing Systems. Proceedings SIGCHI'8Y, Austin, pp
325-330

Vander Zanden B, Myers BA (1990) Automatic, look-and-feel
independent dialog creation for graphical user interfaces.
Human Factors in Computing Systems. Proceedings SIG-
CHI'90, Seattic. pp 27 34

Vander Zanden B, Myers BA (1991) Creaung graphical interac-
tive application objects by demonstration: the Lapidary in-
teractive design tool. 12-minute videotape. SIGGRAPH
Video Review Issue 64

116

Vander Zanden B, Myers BA, Giuse D, Szekely P (1991} The
importance of indirect references in constraint models. Proc
ACM SIGGRAPH Symposium on User Interface Software,
Hilton Head

Vlissides JM, Linton MA {1989) Unidraw: a framework for
building domain-specific cditors. Proc ACM SIGGRAPH
Symposium on User Interface Software and Technology,
Williamsburg, pp 158-167

Wiecha C, Bennet W, Boies S, Gould J (1989) Generating user
interfaces to highly interactive applications. Human Factors
in Computing Systems. Proc SIGCHI'89, Ausun, pp 277~
282

Wilde N, Lewis C (1990} Spreadsheet-based interactive graph-
ics: from prototype 1o tool. Human Factors in Computing
Systems. Proceedings SIGCHI'90, Seattle, pp 153-139

BRAD A. MYERS 15 a re-
search ccmputer scienust at
Carnegie Meilon University.
where he is the principal invesu-
gator for the Garnet User Inter-
face Development Enwiron-
ment. From 1980 until 1983, he
worked at PERQ Systems.
Myers received his PhD in com-
puter science at the University
of Toronto, where he developed
the Peridot UIMS. He received
his MS and BSc degrecs from
the Massachusetts [nstitute of
Technology, during which ume
he was a research intern at Xer-
ox PARC. His rescarch interests inclide user-interface develop-
ment systems, user interfaces, programming by example, visual
programming, interaction techmques, window management.
programming environments, debugging, and graphics. He be-
longs 10 SIGGRAPH, SIGCHI, ACM, 1EEE. and the IEEE
Computer Society.

BrAD VANDER ZANDEN :s
assistant professor at the Uni-
versity of Tennessee and an dc-
uve participant n the Garnet
project. His work has focused
on developing new paradigms
for creating interactive visual
cavironments and on crealing
new meremental algorithms Jor
constrant satsfuction. More
generally his rescarch nterests
include user-interface develop-
ment systems. program visual-
1zation and anumation, con-
- straint systems, programming
caviconments, and graphics Dr
Vaander Zanden received his bachelors degree from O State,
and his MS and PhD from Corneli. He also spent two vears
as a postdoctoral fellow at Carnegie Mecllon. e 1s 0 member
of the ACM ar.d IEEE.

7,

Fy
NN 00 £ NS 87884 2T ILENE L 0 0 S 20 I

% PostScript Contents H
2

%

A ool

s

£ . s H
; PostScript Window §
H

ottt A OO RO K XA

Reprinted from Watch What | Do: Programming by Demonsiration,
Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman,
David Maulsby, Brad A. Myers and Alan Turransky, eds.
Cambridge, MA: The MIT Press, 1993. pp. 219-236.

Garnet: Chapter
Uses of Demonstrational 1 0
Techniques

by
Brad A. Myers
Carnegie Mellon University

Garnet is a comprehensive user interface development environment in Lisp for
X/11 (Display Postscript and Macintosh versions are in progress). It helps
create graphical, highly-interactive, direct manipulation user interfaces. Gamet
contains many high-level tools, including the Gilt interface builder [Myers 91d],
the Lapidary interactive design tool [Myers 89b], the C32 spreadsheet system
[Myers 91a], the Jade dialog box system [Vander Zanden 90}, and more to come.
Garnet also contains a complete toolkit, which uses constraints [Vander Zanden
91a], a prototype-instance object model, and a new model for handling input
{Myers 90c]). The toolkit also contains two complete widget sets, one with the
Motif look and feel.

Typical applications created with Gamet include: drawing programs similar o
Macintosh MacDraw, user interfaces for expert systems and other Al applica-
tions, box and arrow diagram editors, graphical ﬁmgmnming languages, game
user interfaces, simulation and process monitoring programs, user interface con-
struction tools, CAD/CAM programs, ewc. Gamet is in the public domain and
is freely available. As of fall, 1992, over 30 projects around the world are using
the system regularly. You can get Garnet by anonymous FTP from
a.gp.cs.cmu.edu. Change to the directory /usr/garnet/garnet/

Gamet: Use of Demonstration

- 70

| BRAD MYERS

and retrieve the README file for instructions. Or you can send electronic mail
0 garnet@cs.cmu.edu. Gamet stands for Generating an Amalgam of
Realtime, Novel Editors and Toolkits.

One of the important goals of the Garnet project is to allow all aspects of the
user interface o be created without conventional programming. In particular, we
want to allow the user 10 draw example pictures to show what the user interface
will look like, and then demonstrate how the user interface will respond to in-
puts from the end user. As a resuit, demonstrational techniques are widely used
in Gamet, mainly in the various higher-level tools. This chapter discusses some
of these. Other papers about Gamnet discuss e overall design [Myers 90d], the
components, the programming style [Myers 92a] [Myers 92f], and there is a
complete reference manuai [Myers 92b].

The Lapidary user interface tool allows the pictorial aspects of programs to be
specified graphically [Myers 89b] [Vander Zanden 91b). A “Lapidary” is a
workman who cuts, polishes and engraves precious stones, and here is a Lisp-
Based Assistant for Prototyping [nterface Designs Allowing Remarkable Yield.
In addition, the behavior of these objects at run-time can be specified using
dialogue boxes and by demonstration. In particular, Lapidary allows the designer
to draw pictures of application-specific graphical objects which will be created
and maintained at run-time by the application. This includes the graphical
entities that the end user will manipulate (such as.the components of the
picture), the feedback that shows which objects are selected (such as small boxes
around an object), and the dynamic feedback objects (such as hair-line boxes 10
show where an object is being dragged). Lapidary is a direct descendent of
Peridot (chapter 6) and extends a number of Peridot’s ideas.

71 - Second Gamet Compendium
GARNET }
Box Constraint Menn | : I
(a) test ° butle ° l deft

op]
ottser 5]

@-

(b)

(d)

multi-text :
width[o_] :height 5]
cne[] seus[i]

Difterence Difference

oot

L

©
In addition, like Peridot, Lapidary supports the construction and use of “widgets” Figure 1: The workspace window of
(. called i . hni h b Lapidary (b), where a node of a graph
someumes) mwru_mon techniques or gadgets)_ Such as menus, m ars, editor is being created, along with the
buttons and icons. Lapidary therefore supports using a pre-defined library of gandard commands (a), object menus
widgets, and defining a new library with a unique “look and feel,” The run-time fc), and a dialog box for setting con-
behavior of all these objects can be specified in a straightforward way using S%7@is on rectangles (d).
consgaints and abstract descriptions of the interactive response to the input
devices. Lapidary generalizes from the specific example pictures to allow the

graphics and behaviors 0 be specified by demonstration.

Graphical objects can be created in a number of different ways using Lapidary.
As shown in Figure 1, the standard menus provide the usual range of graphical
primitives, so objects can be created from scratch.

-72

Gamet Use of Demonstration

{ BRAD MYERS

Canstraints

A ceatral feature of Lapidary that makes it appropriate for creating run-time ap-
plication graphics is the use of constraints. Constraints allow the designer o
specify a relation between a graphic object and other objects in the scene, and
have that relation maintained at run-time by the system. If a constraint is one of
a standard set, then it can be specified easily using the Lapidary menus (see
Figure 1-d). These menus support having objects be connected on their edges or
in the middle, with optional offsets. The sizes of objects can also be related.
There are different windows showing the constraints for lines and a few other
objects. Experience with Peridot demonstrates that these simple types of
constraints make up the vast majority of those needed in typical user interfaces.

Sometimes, designers want to use relationships that cannot be created out of
these simple choices. In that case, the Cust om option is selected, and the de-
signer is allowed to type in an arbitrary Common Lisp expression specifying the
constraint using the C32 system (discussed below).

Unlike Peridot, Lapidary currently does not try to infer the graphical constraints.
Insiead, they must all be specified explicitly using the dialog boxes. With
Lapidary, we wanted to concentrate on creating a practical tool that extends the
range of interfaces that can be produced, and the constraint inferencing in Peridot
was felt to be too risky for the first version. Future Garnet tools will revisit
this issue,

In order for the graphical objects to be useful at run-time, the specific constraints
must be generalized 10 work on run-time objects, rather than on the specific ex-
ample objects used in the editor. For example, in Figure 1, the label on the
nodes should change, but still stay centered, as the node is replicated. Thus, the
constrain*~ need 0 be generalized to reference objects indirectly through
variables, rather than by using specific object names. To do this, the reference
to the object is replaced with an expression that calculates the desired object, and
stores it in a special slot. The constraint system then automatically ensures that
the constraints change whenever the slot is set with a different object.

It is important to emphasize that Lapidary makes these transformations automat-
ically. The user interface designer never sees any of the code. Even if the de-
signer created custom constraints by typing Lisp code, the references in the ex-
pression can be to example objects (selected by pointing at them with the

Second Gamet Compendium

GARNET |

mouse), and the system will convert these references to be general variables
where appropriate.

Another way that Lapidary generalizes from the examples is to automatically
make copies of objects at run-time. For example, to show the selection in a
drawing editor, the designer might draw a single set of selection handles around
an example object. However, at run time, multiple objects might be selectable,
so Lapidary arranges for the selection handles to be duplicated at run-time if nec-
essary.

Interactive behavior

Although it is useful to prototype the graphic appearance of user interfaces, it is
much more useful if the interactive behavior can aiso be specified easily.
Lapidary therefore provides this capability. In order to edit the behavior of
objects, or 10 add behavior to new objects, we have encapsulated a number of
kinds of interactive behaviors into “interactor” objects [Myers 90c], each of
which has its own dialogue box for specifying properties. For example, to
~ change which mouse button operates a menu, it is only necessary to change the
button indicated in the dialogue box.

Often, there will be a specific object that serves as the feedback for an operation.
For example, a reverse-video rectangle might move over the items in the menu
to show which is the current selection. In other cases, the objects themselves
should change 10 be the feedback. For cxample, the currently selected item in 2
menu might be shown in italics. Another use is to have buttons move w0 cover
their shadows (and therefore look more “3-D™), as in the Motif and Gamet look
and feels. In this case, the desired changes can be shown by demonstration. To
specify the changes by demonstration, first the designer selects the objects that
will change, and then hits a button in the dialogue box. The full current state of
the selected objects is remembered. Next, the designer edits the objects in
whatever way desired, for example to make the string be italic. Then, another
button is hit, and Lapidary creates a constraint that will choose between the two
values based on whether the object is selected or not. Changes can be made 10 as
many properties as desired, and correct constraints will be created for all of them.

Summary
Through the use of demonstrational techniques, Lapidary is able 1o allow the de-
signer to interactively create far more of the user interface than any other tool.

Gamet: Use of Demonstration

- 14

| BRAD MYERS

In particular, new widgets and application-specific objects can be created.
Demonstrational techniques are crucial since these objects all are parameterized
and will change dynamically at run time, so it is only possible to draw exam-
ples, not the actual objects to be used. These examples generalized into named
prototypes which the applications can then make instances of at run ime.

When the iconic menus in Lapidary are not sufficient for specifying the desired
constraints, Gamnet provides the C32 spreadsheet program to help enter more
complex constraints [Myers 91a]. C32 can also be used stand-alone. It displays
and allows the user to edit any kind of object and constraint, no mauer how they
were created: by hand-coding, by using Lapidary, or by using C32. C32 stands
for CMU’s Clever and Compelling Contribution to Computer Science in
Common Lisp which is Customizable and Characterized by a Complete
Coverage of Code and Contains a Cornucopia of Creative Constructs, because it
Can Create Complex, Correct Constraints that are Constructed Clearly and
Concretely, and are Communicated using Columns of Cells that are Constantly
Calculated so they Change Continuously and Cancel Confusion.

Figure 2 shows a typical instance of C32. Each column contains a separate ob-
ject. Rows are labeled with the names of the slots, such as :left, :top,
:width, :height, :visible,etk. Since different objects can have dif-
ferent slots, the slot names are repeated in each column. For example, lines
have slots for the endpoints (: x1, :yl, :x2, :y2)butrectangles do not.

" Also, each object’s display can be scrolled separately, so each has its own scroll

bar. This makes the spreadsheet look somewhat like a multi-pane browser as in
Smalltalk.

15-

Second Gamet Compendium

ﬁ C32: :R C32: :LINE1 4»| c32:
At @ Lo X3 [) Pl
— . T @ lio flal 20 Fon
| -wigrh 20 D 2 100 L lef
_LHeighr e f20 o2} 2 10 Iop
<¥isible Mf Laft [} Tou P01 g
sLige=style lOPAL;DEFAULT-LI.®| iTop 10 TIST
SEilling-Style IL o] HigLh gm Vits
| - Draw-Fugcrion Py D sHeighr gn Lin
m C32"W 'KI:Ihl: ™ 2]
"‘v‘_;gwr_ C32: :DEMO-AGG - Line-style OPALBLUF-~T INF o|-<da
-3.;:.5:& {QPALIRECTANGLE o | | .F{lling=Style INTZ oo 5 Dra;
” ~ . v~
28 :>
(a)
Figure 2: (a) C32 viewing three ob-
jects (b). The scroll bars can be used
to see more siots or columns.
Tester Changing the window's size will
change the number of slots and ob-
jects displayed (the number of rows
and columns). Field values are
() clipped if they are too long, but can

The spreadsheet cells show the current values of the slots. If a value changes,
then the display will be immediately updated. If the user edits the value in the
spreadsheet cell, the object’s slot will be updated. The “F” icon by some slots
in Figure 2 means that the slot value is computed from a formula. Pressing the
mouse on the icon causes the constraint expression to appear in a different win-
dow. The expression itself can be edited by typing or other techniques.

Use of inferencing

It is sometmes not convenient to read an object into a spreadsheet column just
10 generate a reference to it. Therefore, a command will place into the current
formuia a reference to any object in a Garnet window. However, selecting a
graphical object does not specify which slot of the object should be referenced.
In one mode, the user must type this directly or select a slot from a menu.
However, the other mode uses heuristics to guess the slot from the exampie by
looking at the slot being filled and where the mouse is pressed in the selected ob-
ject. For example, if the slot is :1e £t, and the mouse is pressed at the right of
an object, then the reference will be to the right of the object. For the :width

be scrolled using editing commands.
The “F” icon means that the siot value
is compused with a formula. Al in-
herited slots are shown in italics and
marked with the “I" icon. When a
formula is inherited the value is
shown in a regiilar fors since it is usu-
ally different from the prototype’s.
The inherited icon is also shown next
{0 the formula icon rather than nexi to
the value.

Gamet. Use of Demonstration

- 76

| BRAD MYERS

slot, however, the same press would generate a reference to the width of the ob-
ject. Unlike Peridot, C32 does not try to confirm any of the inferences, but
rather simply inserts the text into the formula. If the guess is incorrect, it is
eagsy for the user to delete the text and type the correction.

Once a complex formula is created, it will ofien be needed in a slightly different
form for a different slot or a different object. As an example, suppose the user
has constructed a constraint that centers an object horizontally with respect to
two other objects. Now, suppose the programmer wants to center the object ver-
tically also. The formula could be copied to the : t op slot, but all the slot ref-
erences need to be changed (:left to :top and :width to :height).
Therefore, when a formula is copied, C32 tries to guess whether some slot
names should be changed. This uses a few straightforward rules based on the
slot names of the source and destination slots. Currently, these rules are hard-
wired into the code. If it appears that slot names should be changed, the user is
queried with a dialog box, and if the answer is OK, then the formula is modified
automatically. Since this is a more radical change than the inferred siots dis-

- cussed in the previous section, it scems prudent to require confirmation.

Automatic generalization

Another possibility is that the references in the formula should be generalized
into variables. C32 therefore provides a command that will change the entire
formula into a function that takes the objects and/or slots as parameters. The
user can choose the names for the function and for the variables. C32 will gen-
eralize objects, slots, or both.)

The intelligent copying and generalizing in C32 helps the user generate correct
constraints by example. Without these aids, it is quite common to forget to
change one or more of the references when formulas are copied. Generalizing
also helps the programmer decrease the size of the code by promoting the reuse
of existing formulas.

Gilt is an interface builder that allows dialog boxes and other windows 1o be
created interactively by choosing widgets from a palette and putting them into a
window using a mouse [Myers 91d]. Gilt is similar to many other interface

Second Gamet Compendium

GARNET |

builders, including the NeXT Interface Builder, Prototyper from SmethersBarnes
for the Macmwsh, ewc. Gilt stands for the Gamet interface Layout Tool.

Demonstrational techniques have been added to Gilt in two places: to infer graph-
ical styles from examples, and to infer transformations of data and dependcncxes
to minimize the number of call-back procedures.

Graphical styles in Glit

In most toolkits, the widgets have many properties that the designer can set,
such as the color, font, label string, orientation, size, the minimum and
maximum values of a range, etc. Many widgets in the Motif widget set, for
example, have nearly 50 different properties that can be set. Most interface
builders, including Gilt, provide “property sheets” that allow the designer w0
specify the desired values. However, it can be quite difficult and time consuming
to find and set all of the appropriate properties. To show the magnitude of the
problem, many applications contain over 2000 widgets, and tt.e properties for
each must be set in a consistent manner. A study has shown that achieving
consistency in an interface is a frequently cited problem [Myers 92¢].

Another probiem for interface designers is laying out the widgets in the window.
When the designer places widgets with the mouse, they tend to be uneven and
look sloppy. Therefore, most builders provide. grids and alignment commands.
However, these can be clumsy to use, and they do not ensure that different dialog
boxes will have a consistent alignment (for example, that the titles are always
centered at the top of the window).

To help solve these problems, Gilt introduces the notions of Graphical Tabs and
Graphical Styles into an interface builder, which are more completely described
in [Hashimoto 92). These are based on the styles and tabs in text editors such as
Microsoft Word. A “graphical tab” is simply a horizontal or vertical position in
the graphics window to which objects can be aligned. A “graphical style” is a
named set of properties, which can be applied to widgets. The designer can edit a
widget so it has the desired properties, select it, and then define a named style
based on it. The values of the properties and the positions of the widgets will be
associated with that style name. The style can then be applied to other widgets.

Furthermore, Gilt will try to automatically guess when to apply a style, so the
designer does not have to. By guessing the appropriate properties and layout,

Gamet: Use of Demonstration -78

| BRAD MYERS

Gilt makes the user interface design process significantly faster, since users can
quickly and imprecisely place widgets, and the system will automatically neaten
them. Since the inferencing is based on the styles the user has defined, rather
than based on global, default rules, as in earlier systems like Peridot and Druid
[Singh 90}, the inferred properties and positions are more likely to be correct.

These features in Gilt are classified as “demonstrational” because the user defines
a style by example on a particular widget, but the style is automatically general-
ized so it will work on any of a set of widget types.

A graphical style includes a set of widget properties, and optionally some posi-
ton information as well. To create a new style, the designer modifies a widget
to the desired appearance using the conventional property sheets, selects that
widget, and then issues the Define Style command. The designer must
then type a style name into the Style editing window that will appear. Gilt
compares the widget's current properties with the default values for that widget
and copies all that are different. Styles can also include position information.
For example, a designer might specify that objects with the Main-Title-
Style should use a large bold font, and be centered at the top of the window.
The position information for styles can either be with respect to a graphical b
stop, or relative to a previously created object.

Inferring styles

Although the styles mechanism as described above is already quite useful, Gilt
goes further and tries to automatically determine when a particular style is ap-
propriate. The style control window (Figure 3) provides three options: no infer-
encing of styles, styles applied immediately when they are inferred, or a prompt-
first mode where the designer is asked if the style should be applied, as in Peridot
and Druid [Singh 90]. If the system usually infers the correct style, then the
immediate mode will be the most efficient.

Second Garmet Compendium

GARNET |

-rum: l/usr/bam(cmu-styles Read l Save ! Clearl

‘Guessing: Aoy N Immediate
W Prompt First
+ COFF

Set Style Define Stylej Edit Style Edit TabStop

Try Again}] Undc

Style of Selected Object: Main-Title-Style

When inferencing is on, Gilt tries to infer a new style whenever a widget is cre-
ated or moved. The algorithm looks for styles that affect the same type as the
widget, and, if the style has a position component, then it checks how close the
widget matches the style’s position. The types that styles are associated with
include strings, button objects (including radio buttons and check-boxes), nu-
meric sliders (including both sliders and scroll bars), text input fields, etc. A list
is created of all the styles that match, sorted from most likely to least likely.

Any inferencing system will sumetimes guess wrong. Thus, it is important to
provide appropriate feedback so the users are confident that they are in control
and know what Gilt is doing. In immediate mode, the first style on the style list
is immediately applied to the graphics, and the name of the style is shown at the
bottom of the style control window (Figure 3). The widget will also jump to
the inferred position and change appearance. If the inferred style is not correct,
the designer can hit the “Try Again” button, which will remove the guessed style
and instead apply the next style in the sorted list. This can be repeated until
there are no more styles in the list. The “Undo” button can also be hit to
remove the guessed style, and return the widget to its original position and
properties. In prompi-first mode, the sorted list of all the inferred styles is pre-
sented in a window, with the most likely selecied. The designer can select a dif-
ferent style, if necessary, and then hit OK or Cancel. When a style is defined, it
immediately becomes a candidate for inferencing. This is very useful when a
number of widgets will all be created using the same style.

Figure 3: The main style cortrol
window. This allows styles 10 be read
and written to a file, and style guess-
ing to be turned on and off. Also. the
style of the selected object is aiways
echoed at the bottom of the window.

Gamet: Use of Demonstrauon

- 80

| BRAD MYERS

Editing styles

When a style is applied 10 a widget, either explicitly or inferred, Gilt sets up
appropriate pointers and back pointers so that if the style is ever edited, all
widgets using that style are immediately updated.

Styles can be edited in two ways. A property sheet can be displayed which
shows the current values of the properties for the style, and this can be edited di-
rectly. This property sheet has the same format as the ones for the standard wid-
gets. The positions associated with the style can be edited using the appropriate
dialog boxes.

Alternatively, the designer can edit the styles in the same way as they were cre-
ated: by working on example widgets. Whenever a widget is edited that has al-
ready been defined to be of a particular style, Gilt pops up a dialog box asking if
the edit should change the style itself. The other altemnatives are to make the
widget no longer belong to the style, or w cancel the change and retumn the ob-
ject to its appearance before the edit was attempied.

In the future, we plan to add the ability to have objects use a particular style
with exceptions, but this is a complex problem {Johnson 88]. Some of the is-
sues are whether to copy the attributes or retain the link to the onginal style,
what to do to a styte when the style it inherits from is changed. and whether to
save the inheritance links in the style files, or write out all the style information
1o each file.

Minimizing cail-back procedures In Giit

Conventional toolkits today require the programmer to attach cali-back proce-
dures to most buttons, scroll bars, menu items, and other widgets in the inter-
face. These procedures are called by the system when the user operates the wid-
get in order to noufy the application of the user's actions. Unfortunately, reai
interfaces contain hundreds or thousands of widgets, and therefore many call-back
procedures, most of which perform trivial tasks, resulting in a maintenance
nightmare. Gilt allows the majority of these procedures to be eliminated (Myers
91d]). The user interface designer can specify by demonstration many of the
desired actions and connections among the widgets. so call-backs are only needed
for the most significant applicaton actions. In addition, the call-backs that
remain are completely insulated from the widgets, so that the application code s
better separated from the user interface.

8! -

Second Gamet Compendium

We have observed that many of the call-back procedures are actually used to filter
the values from widgets and connect widgets to each other, rather than to perform
real application work. By identifying some common tasks that call-backs are
used for, and providing other methods for handling the tasks, we have been able
to eliminate the need for most call-backs. The tasks can be classified into the
following categories:

Preparing the data for applications. Often, call-backs are used to
convert the values that the widgets return into a form that the application
wants, This may involve converting the type of a value, for example
from a string to an enumerated type, or it may involve combining the

" values from multiple widgets into a single record structure.

Error checking. Before the data is passed to the application, some error
checking of it is often needed, along with appropriate messages when
there is an error.

Preparing data to be shown to the user. Another set of procedures
is usually needed to set the widgets with appropriate dciault values,
which are often dynamically determined by the application. For exam-
ple, when a color dialog box is displayed, the widgets in it will usually
need to be set to the color of the currently selected object. In some
cases, it may even be necessary to change the number of widgets in the
dialog box each time it is displayed, for example, if a button is needed
for each application data value. '

Internal control. Many call-backs are used to control connections be-
tween user interface elements, which require little application interven-
tion. For example, these procedures might cause a widget to be disabled
(gray) when a radio button is selected, or cause one dialog box o appear
when a button in another is hit,

Gilt provides a standard style of window that allows the filter expressions to be
entered. The goal is to minimize the amount of code that needs to be typed t
achieve the required transformation. Therefore, much of the filter expression is
generated automatically when the designer demonstrates the desircd behavior.
Other parts can be entered by selecting items from menus. As a last resort, the
designer can type the required code. If a call to an application function is neces-
sary in a filter expression, Gilt makes sure that the procedure is called with ap-

Gamet: Use of Demonstration -82

J BRAD MYERS

propriate high-level parameters, rather than such things as a widget pointer or the
string labels. Thv,, ** ¢ call-backs that remain are completely insulated from the
user interface.

Gilt tries o automatically pick the appropriate transformation. There are two
techniques used to guess what is appropriate. First, the designer can type an ex-
ample value into the Resulting Filtered Value field at the bottom of
the Exported Value Control window (Figure 4-3). In this case, Gilt
will try to guess a transformation that will convert the current unfiltered value
into the specified value. If none of the built-in transformations is appropriate,
then Gilt creates a case statement. The designer can then operate the widget to
put it into different states (and therefore to change the unfiltered value), and type
the desired filtered value for each case. This allows arbitrary transformauons
(e.g., converting the German “Fettdruck” or the French "Gras” 10
:BOLD). The resulting code for the filter is shown in the Filter
Expression window.

The second option is used when the designer enters a procedure into the filter ex-
pression, and then selects a widget to supply the value 10 a parameter of the pro-
cedure. Here, Gilt tries to find an appropriate ransformation so that the widget
value will be filtered into the required type of the parameter. A Value
Control window will pop up to confirm each transformation, and also to re-
quest the designer 10 specify the ransformation if Gilt cannot infer it.

The user can check that the filter expression is achieving the desired result in two
ways. First, the interface can be exercised to test the code. Second, the
Filter Expressicn field shows the Lisp code that is being used. In the
future, we will be investigating other techniques for showing the transformations
that will be usable by non-programmers. For example, the fiiter expressions
might use normal arithmetic expressions, or we might create a special graphical

programming language.

83 -

Second Garnet Compendium

Exported Value Control for *Standard Font:"

‘ tnfiltered Valua: *standard Font:® o | aopiy | cancer}

 piiter ca: Use Value of onjactl

- {gv iself :value)
(a)

Mesulting Filtered Valos: |*Standard Foat:® Erzor cnm:xl

Exported Value Control for "Standard Font:"

Onfiltsred Value: “Standard Fomt:® oK l Apply] Cancel j
«w vype &rror in parameter **

Filtezr Expression:

Use Value of onject]

{get-standard-font
(b) (gv FAMILY :filtered-value)
{gv FACE :fiitersd~value)
{gv SI2E :filtered-value) }

Resulting Flltered Value: {NIL Error Check

Exported Value Control for "Standard Font:"
Exported Value Control for "FAMILY"
Zxported Value Control for "FACE"
m{Zxported Value Control for "SIZE"

& | apply | canceir]

Use Value of mjm!
A —vv——————

Tilter Ixpression:
Y (GLlt:Make~Reyword (gv :3elf :valuel)}

ok

ot

faeulting Piltered Valne: |::EnIimM

Figure 4: (a) The Gilt window tha
allows the designer to control how
values for widgets are filtered. Many
of the fields are filled in by Gilt as the
designer demonstrates the desired be-
havior. The Unfiltered Value
shows the value as currently provided
by the widget before any filtering.
The Filter Expressionisthe Lisp
expression (0 filter the value. The de-
signer can hit the Use Value of

Ob jact bulton to insert a reference 10
the value of a selected object. The de-
fault filter simply copies the original
value. The Resulting Filterec
Value field shows the final value af-
ter the filtering. This field can be
edited to show the transformation for
the current widget by exampie. (b)
shows the filter expression after a
Junction has been selected from a
menu and the widget references have
been filled in. (¢) shows the addi-
tional windows that appear to confirm
the transformations that are inferred
Sor the widgets that are referenced in
{b).

Gamer: Use of Demonstration

| BRAD MYERS

For enabling and disabling widgets, similar techniques are used. One of the
most common dependencies is to enable and disable widgets based on the values
of other widgets. To specify this, the designer can operate a widget to have the
appropriate value, then enable or disable the dependent widget, and Gilt will fill
in the values for the Change my Enable expression. In trying to guess ap-
propriate control expressions for dependent slots, Gilt knows about check boxes
and radio buttons being on or off, text fields being empty or having a value, and
numbers being zero or non-zero. In addition, if the Change my Enable
window is for a ser of selectable items (such as 2 menu or a panel of buttons),
the controlling widget can return a list of values, each element of which controis
an item.

All the other properties of widgets can be controlled in the same way as en-
abling. Widgets can be made to be visible and invisible by bringing up a
Change my Visible window. Similar windows control properties such as
color and font.

To edit the value of any of the filter expressions for a widget, the designer can
simply select the widget and bring up the appropriate Control... or
Change my... window. The designer can then edit the text of the expres-
sion. Alternatively, if the yser demonstrates new transformations, these will re-
place the existing ones as appropriate.

Jade creates dialog boxes from just a list of their contents [Vander Zanden 90]. It
uses general rules from graphic design as well as look-and-feel-specific rules in
order to create a pleasing presentation. Jade is useful when an application
contains a large number of dialog boxes (so that using Gilt would be
inconvenient), or when the contents of a dialog box is not known in advance so
the dialog box needs to be dynamically generated (so using Gilt would be
impossibie). Jade stands for the Jydgment-based Automatc Dialog Editor.

The demonstrational aspect of Jade is that it will automatically generate the rules
that control the layout from examples of the desired picture. An interactive edi-
tor is being created that will allow the designer 10 show the system how the in-
terface should look. This part of the system is still under development.

Second Garnet Compendium

GARNET |

Gamet contains built-in support for interfaces including gestures. A gestural
interface uses the path that the mouse goes through in order to determine the
command. For example, the user might draw an “X” over an object to cause it
to be deleted, or an “L” shaped motion might mean to create a new rectangle,
whereas a circular motion might mean create a new circle. The gestural mecha-
nism in Gamet uses an algorithm that is trainable [Rubine 91a). This means
that the designer gives examples of the desired gestures, and the system uses
statistical techniqaes to match the end-user’s gestures against the examples to
decide which gesture the end-user is giving.

Unlike Peridot, the goal in Gamet is not specifically to investigate demonstra-
tional techniques, but rather 10 create a usable and efficient collection of tools to
create user interfaces. However, we have found that demonstrational techniques
are very effective for extending the boundaries of what can be accomplished by
direct manipulation. Inferencing is used in most of our demonstrational sys-
tems, but it is not particularly sophisticated. In all cases, just one or two rules
are needed to decide how and when to generalize. All the techniques are applica-
tion-specific and ad-hoc, which suggests that some general-purpose wotkit con-
taining demonstrational techniques would probably not be helpful. As with
other demonstrational interfaces, the primary problems in Gamnet have been how
10 provide appropriate feedback for the generalizations so the users are comfort-
able with them, and how to allow editing. In most cases, the technique used cur-
rently is just to show the Lisp code that was inferred, and require that the user di-
rectly edit the code, but we plan to investigate more sophisticated methods in the
future.

The Gamnet research is sponsored by the Avionics Lab, Wright Research and
Development Center, Aeronautical Systems Division (AFSC), U. S. Air Force,
Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465,
Arpa Order No. 7597.

The views and conclusions contained in this document are those of the authors
and shouid not be interpreted as representing the official policies, either expressed
or implied, of the U.S. Government.

Acknowledgments

Gamet: Use of Demonstration - 86

| BRAD MYERS

[Hashimoto 92) Hashimoto, O. and Myers B., “*Graphical Styles For Building User
Interfaces by Demonstration,” ACM Symposium on User Interface Software
and Technology, Monterey, CA, Nov. 16-18, 1992, pp. 117-124.
Reprinted in this techkmical report.

{Johnson 88] Johnson J. and Beach R., “Styles in Document Editing Systems,” /EEE
Computer, Vol. 21, No. 1, IEEE, January 1988, pp. 32 - 43.

[Myers 89b] Myers B., Vander Zanden B. and Dannenberg R., “Creating Graphical
Interactive Application Objects by Demonstration,” Proceedings of the
Symposium on User Interface Software and Technoiogy, ACM SIGGRAPH,
Williamsburg, November 1989, pp. 95 - 104.

Myers 90c] Myers B., “A New Model for Handling Input,” ACM Transactions on
Information Systems, Vol. 8, No. 3, ACM, July 1990, pp. 289 - 320.

[Myers 90d] Myers B., Giuse D., Dannenberg R., Vander Zanden B., Kosbie D., Pervin E.,
Mickish A. and Marchal P., “Gamet: Comprehensive Support for Graphical,
Highly-Interactive User Interfaces,” /EEE Computer, Vol. 23, No. 11, IEEE,
November, 1990, pp. 71 - 85.

(Myers 91a] Myers B., “Graphical Techniques in a Spreadsheer for Specifying User
Interfaces,” Proceedings of CHI ‘91, ACM, New Orleans, April 1991, pp.
243 - 249. Reprinted in this technical report,

[Myers 91d] Myers B., “Separating Application Code from Toolkits: Eliminating the
Spaghetti of Call-Backs,” Proceedings of the Symposium on User Inierface
Software and Technology. ACM SIGGRAPH, Hilton Head, November 1991, pp.
211 - 220. Reprinted in this technical report.

{(Myers 92a] Myers B. and Vander Zanden B., “Environment for Rapid Creation of
Interactive Design Tools,” The Visual Computer: International Jourmal of
Computer Graphics, Vol. 8, No. 2, February 1992, pp. 94 - 116.
Reprinted in this technical report.

87.-

Second Gamet Compendium

GARNET |

[Myers 92b]

| [Myers 92¢]

[Myers 92f)

{Rubine 9la]

(Singh 90]

{Vander Zanden 90]

[Vander Zanden 91a]

{Vander Zanden 91b}

Myers B., Giuse D., Dannenberg R., Vander Zanden B., Kosbie D., Marchal P,
Pervin E., Mickish A.. Landay J., McDaniel R. and Gupta V., “The Garnet
Reference Manuals: Revised for Version 2.1,” Technmical Report CMU-CS-50-
117-R3, Department of Computer Science, Camegie Mellon Usniversity, May
1992.

Myers B. and Rosson M., “Survey on User Interface Programming,”
Proceedings of CHI ‘92, ACM, Monterrey, May 1992, pp. 195 - 202.

Myers B., Giuse D. and Vander Zanden B., “Declarative Programming in a
Prototype-Instance System: Object-Oriented Programming Without Writing
Methods,” Proceedings of the Conference on Object-Oriented Programming:
Systems Languages and Applications, Octcber 1992, pp. 184-200.
Reprinted in this technical report.

Rubine D., “Specifying Gestures by Example,” Proceedings of SIGGRAPH
‘91, Vol. 21, No. 4, ACM, Las Vegas, July 1991, pp. 329 - 337.

Singh G., Kok C. and Ngan T., “Druid: A System for Demonstrationai Rapid
User Interface Development,” Proceedings of the Symposium on User
Interface Software and Technology, ACM SIGGRAPH, Snowbird, October
1990, pp. 167 - 177.

Vander Zanden B. and Myers B., “Automatic, Look-and-Feel Independent
Dialog Creation for Graphical User Interfaces,” Proceedings of CHI 90,
ACM, Seattle, April 1990, pp. 27 - 34.

Vander Zanden B., Myers B., Giuse D. and Szekely P., “The Importance of
Pointer Variables in Constraint Models,” Proceedings of the Symposium on
User Interface Software and Technology, ACM SIGGRAPH, Hilton Head,
November 1991, pp. 155 - 164. Reprinted in this technical report.

Vander Zanden B. and Myers B., “Creating Graphical Interactive
Application Objects by Demonstration: The Lapidary Interactive Design
Tool,” SIGGRAPH '91Video Review, Vol. 64, No. 1, ACM, 1991,

Second Gamet Compendium

Reprinted from ACM Symposium on User Interface Software and Technology
Hilton Head, SC, Nov. 11-13, 1991. pp. 211-220.

SEPARATING APPLICATION CODE FROM TOOLKITS:
ELIMINATING THE SPAGHETTI OF CALL-BACKS

Brad A. Myers .

School of Computer Science
Camnegie Mellon University
5000 Forbes Avenue
Pitusburgh, PA 15213

ABSTRACT

Conventional toclkits oday require the programmer 10 at-
tach call-back procedures w0 most buttons, scroll bars,
menu items, and other widgets in the intcrface. These
procedures are cailed by the system when the user operaies
the widget in order to notify the application of the user's
actions. Unfonunately, real interfaces contain hundreds or
thousands of widgets, and therefore many call-back
procedures, most of which perform trivial lasks, resulting
in a mainicnance nighunare. This paper describes a system
that allows the majority of these procedures 0 be
eliminated. The user interface designer can specify by
demonstration many of the desired actions and connections
among the widgets, so call-backs are only nceded for the
most significant application actions. In addition, the call-
backs that remain are compictely insulated from the
widgets, so that the application code is better separated
from the user interface.

KEYWORDS: Call-Back Procedures, Dialog Boxes,
UIMSs, Inwcrface Builders.

1. Introduction

The Gilt Interface Builder allows dialog boxes and similar
user interface windows (o be created by selecting widgels
from a paieue and laying them out using a mouse. More
intcrestingly, Gilt provides a variety of mechanisms (o
reduce the number of call-back procedures that arc neces-
sary in graphical interfaces. A ‘“‘cail-back’’ is a procedure
defined by the application programmer that is called when
a widge! is operaied by the end uscr. A “‘widget’” is an
interaction technique such as a meny, button or scroll-bar.
A collection of widgets is called 3 tootkit. Examples of
toolkits are the Macintosh Toolbox, the Motif and Open-
Look tooikits for X windows, and NeXTStep. Most

Parmission 11 copy without fee all or part of this matenal is
granted provided that the copies are not made or distnibuted for
direct commaercial advantags, the ACM copynght notice and the
utle of the publication and its date appeasr, and natice IS given
that copying is by permission of the Association for Compuling
Machinery. To copy otherwise, or 1o republish, rsquires a fee
sndjor specific permussion.

91991 ACM 0-89791-451.1/31/0010/0211...31.50

toolkits today require the programmer 10 specify call-backs
for almost every widget in the interface, and some widgets
even take more than one call-back. For example, the slider
widget in Motif has two call-backs, one for when the in-
dicator is dragged and one for when it is released.

A typical user interface for a moderately complex program
will contin hundreds or even thousands of widgets. For
example, the VUIT program from DEC uses over 2500
widgets. This means that the programmer must provide
many cafl-back procedures. To add o the complexity, each
type of widget may have its own protocol for what
parameters are passed to the call-back procedures, and how
the procedures access data from the widget.

The use of all of these call-backs means that the user inter-
face code and the application code are not well scparated or
modularized. In particular:

* The cail-backs closely tie the application code to a par-
ticular wolkiL. Since each 100tkit has its own protocol for
how the call-backs are called, moving an application
from one to0olkit 10 another (e.g.. from Motif w Open-
Look) can require recoding hundreds of procedures.

» The call-backs make mainuaining and changing the user
interface very difficult. Changing even a small pan of an
interface often requires rewriling many procedures. Even
1f a graphical interface builder is used o change the
widgets, the cail-backs must be hand-edited afterwards if
widgets are added, deleted. or modified.

» The call-backs ofien are passed the text labels shown ©
the user, so if the natural language ured 1n the dialog box
ts changed (e.g.. from English t0o French), the values
passed !0 the call-backs will change, requinng the ap-
plication code 10 be edited.

We have observed that many of the call-back procedures
are actually uscd to filter the values from widgets and con-
nect widgets (0 each other, rather than to perform real ap-
plication work. By identfying some common tasks that
call-backs are used for, and providing other mcthods for
handling the tasks, we have been able o eliminaie the need
for most call-backs. The tasks can be classified into the
following categories:

November 11-13, 1991

UIST 91 211

Separating Application Code from Toolkits

Preparing the data for applications. Often, cail-backs
are used 10 convert the values that the widgels return
into a form that the application wanis. This may in-
voive converting the type of a value, for example from
a string (0 an enumerated type, or it may involve com-
bining the values from maluple widgets m:o a single
record strucmure.

Error checking. Before the data is passed 10 the applica-
. ton, some error checking of it is often needed, along
wixhappmpriatemesszgeswhendmeisanerror._‘

Preparing data to be shown to the user. Another set of
procedures is usually needed 10 set the widgets with
appropriate default values, which are oftea dynami-
cally dewermined by the applicaton. For example,
when a color dialog box is displayed, the widgets in it
will usually need 10 be set w the color of the currenty
selected object. In some cases, it may even be neces-
sary to change the number of widgets in the dialog box
each ume it is displayed, for example, if a bution is
necded for each application daia value.

Internal control. Many call-backs are used 10 control con-
neclions botween user interface clements, which re-
quire liwle application intervention. For example,
these procedures might cause a widget 10 be disabled
(grey) when a radio button is sclected, or cause one
dialog box to appear when a button in another is hit.

Gilt provides a standard style of window that allows the
filter expressions 1o be entered. The goal is W minimize
the amoum of code that needs 10 be typed o achieve the
required transformation. Therefore, much of the filier ex-
pression is generated automatically when the designer
demonsirates the desired behavior. Other parts can be en-
tered by sciecung items from menus. As a last resort, the
designer can type the rcquired code. If a call o an applica-
tion funcuon is necessary in a filter expression, Gilt makes
sure that the procedure is called with appropriate high-level
parameters, rather than such things as a widget pointer or
the string labels. Thus, the call-backs taat rerain are com-
pietely insulated from the user interface.

Gilt is a part of the Gamet system {8). Gamet is a com-
prehensive user interface development environment con-
1aining many high-level wols, including Gilt, the Lapidary
interactive design ol (7], the C32 spreadsiicet system {9},
eic. Gamet aiso contains a complete wolkit, which uses
consuraints {15] and a prolotype-instance object model.
Gilt siands for the Gamet [nwrface Layout Tool, and it
supports interfaces built using cither the Garnet look-and-
feel widget set or the Motif look-and-feel widget ser.! Gilt
uses CommonLisp, but the idcas presenied herc are ap-
plicable to interface builder 100ls using conventional com-
piled languages.

are snplemented an wp of the
not use any of the Xik code in
CMMM“W&«MWMW[M;& they
have the sanc proasdunal inscrface as e Gamet widgss scL

1
BL
l;
h

2. Related Work

Of course, there are a large number of commercial and
research interface builders that lay out widgets, including
DialogEditor [3}, the Prowtyper for d:e Macintosh [13], the
NeXT Interface Builder, UIMX for Motif, and Druid [12].
However, these only have limited mechanisms for reducing
call-backs. Many of them support transitions from one -
dialog box to another, and NeXT allows the output value of
one widget to be connected 0 the input of another, if no
fillering is needed. Druid adds the ability 10 set the initial
values for widgets (but only statically, not application data
dependent), and (0 collect values of widgets for use as the
parameter 10 a procedure. It allows the designer o specify
some of these by demonstration. However, in Gilt, sig-
nificantly more of the user interface can be specified with-
out requiring call-backs, the call-backs are more independ-
ent of the widgets, and a uniform framework is used for ail
filtering.

A primary influence on Gilt is the Peridot UIMS [6].
Peridot was ibe first system to allow the designer o specify
the behavior of the interface by demonstration. Gilt uses
some of the techniques in Periiot (0 guess the appropriate
transiormations based on the exarmpie values.

The filter expressions that the designer specifies in Gilt are
implemented using constraints. A comstraint is a relation-
ship that is declared once and thea maintained by the sys-
tem. Constraints have been used by many systems, starting
with Sketwchpad {14] and Thingiab [ThinglabToplas]. Uses
of constraints within user interface toolkits include GROW
(1), Peridot {6], and Apogee {5]. .

Other systems have allowed the designer to specify the
connections between the user interface and the application
procedures at a high level. The Mickey system {11} uses
spec_l comments in the procedure definition 0 describe
the connection to the user interface. The UIDE sysiem
[4] allows the application procedures o be defined in ad-
vance, and generates the interface partially from these, Un-
like these systems, Giit requires the designer to specify the
graphics, and thea explicily anach the graphics w the
procedures, but it infers the mapping between the values
rewmed by the widgets and ihe values desired by the
procedures.

3. Example

To show how easy it is 1o define dependencies without
writing call-backs, we will first present an example of
creating the dialog box of Figure 1. There are a aumber of
dependencies in this relatively simple interface. The retum
value of the dialog box is a font object. If one of the
standard fonts is selecied, then the corresponding built-in
font object should be retumned. Otherwise, the retum valve
will be a font specified by name, so the specified file
should be opened, and a new font object created for that
file.

First, the user would create the graphics for the dialog box
by selecting the widgets from a palette and typing in the
correct labels, in the conventional direct manipulation man-

UIST 91

Hilton Head, South Carolina

91 -

Second Gamet Compendium

Figure 1:
A fon selection diaiog box being created in Gilt. When
the Standard Font radio button is pressed, the
Font Name field is disabled (grey), and when the
Other Font radio buiton is sclected, the three sets of
buttons under Standard Font (for the family, face
and size of the font) become disabled.

ner as with other interface builders. Nexi, the designer
gives mecaningful names 10 the widgets (e.g., the
Bold/Italic radio buttons are called “face").

The defauit value of a set of radio buttons is the string label
of the seiected button. We will now override this and make
the value of the Standaxd Font branch instead be the
appropriate font object. To do this, we bring up the Gilt
window in Figure 2-a. When it is brought up, it initially
shows that the resulting exported value from the widget is
the same as the widget's value. To get the appropriate font
object, we need o call the Gilt function get -standard-
font, so we choose this from a menu. This inserts the
function call into the filter expression. The procedure
should be passed the values of the three sets of widgets
under Standard Font. Thercfore, we sclect the three
widget sets and hit the Use-Value-of~Object button
in the window. This inserts references to all the selected
objects into the filter expression, resulting in Figure 2-b.
The references are inserted in the order the objects were
selected. These references will be to the filtered values of
the widgets, which so far are the same as the default values:
the suring names of the labels, However, Gilt knows that
get-standard-font expects Lisp keywords as ar-
guments rather than strings (a "keyword” is an atom
prefixcd by a colon, such as :bold). Therefore, Gilt can
tell that there is a mismatch, so it trics 0 detcrmine a pos-
sible uansformauon. Another Exported Value
Control window pops up for each of the selected
widgets, and the designer can check that the inferred wans-
formations are correct (Figure 2-¢). If not, the designer can
give additional examples or explicitly edit the generated
code. In this example, however, the sysiem guesses all
cases conectly, so the designer simply hits "OK” on all of
the windows. This will assert constraints so that the fil-
tered values of the widgets will be keywords, as required.

Now, the value for the other branch must be set. The
designer selects the Other Font radio button and brings
up the Exported Value Control window for it. By
selecting the get-font-from-file function from a

Rxported Value Coatrol for "Staadard Foat:*”

Unfliteres Value: “Sceadard Toat:® ox | sowiy } ceacet

v of O
Filter Expression: M.—..—”_f:.

3 (gv :smlf :value)

Imxtl-'. Fiitesed value: {“Standard Fome:”

@)

Exported Value Coatrol for "Standard Foat:~

Unflitered value: °Scasdard Fosc:” & | seply | Cosani]
T typm SrINE in Fursmwter TV
Pilter Dxprassiaon:

£S (get-1cangerd-fons

igy FAMILY :filtered-value)
igv FACE :filtered-valuw}
‘ {gv SIZE :filtered-value))

Use Value of O]ml
P et et |

Lrzror Chack *

Resuiting Filtered Value: [NIL

®)

Exported Value Control for “Standard Font:@*"

o Zxported Value Coatrol for “FAMILY"
KExported Valoe Control for “FACE"

wi{Exported Value Control for “3I3E™

i

€

SagiiBanut Jolaet “Nediwr - lWyJ Canee)

e We Yalue ol TWieet

g

‘j KKL1E Made-Rayverd (gv cseif :valuel}
£

Taeniting Flitasad Yales: {:“l\l

©)

Figure 2:

(a) The Gilt window that allows the designer o conwol
how valucs for widgets are filtered. Many of the fields
are filled in by Gilt as the designer demonsiates the
desired behavior. The Unfiltered Value shows
the value as currently provided by the widget before any
filtering. The Filter Expression is the Lisp ex-
pression o filter the value. The designer can hit the
Use Value of Object builon to insert a reference
1o the value of a selected object. The default filter
simply copies the onginal value. The Resulting
Filcered Value ficld shows the final value after
the filtering. This field can be edited 1o show the
transformation for the current widget by example. (b)
shows the filter expression after a function has been
selected from a menu and the widget references have
been filled in. (c) shows the additional windows that
appear to confirm the xansformations that are inferred
for the widgeis that are referenced in (b).

November 11-13, 1991

UIST 91

213

. Separating Application Code from Toolkits '

Error Check for "Other Foat:"

Use Value of O)«:'

1f valus te{NIL,
Asier String ar Puamien |[“File® (v FONT-KUE :valuw) “aot fo

A ==
1f valee h‘ :NOT-TONT

agres Stking oc n—m]-r,u-' (qe TONT-NAME :value} "1s net

= | o]

e ————————
e e ——vr——

Asatrar Lrzor Chesh ;
[ttt tnuient

Figure 3:
This window ailows the designer w specify the handling
of error values. When Other Font's filtered value is
NIL. the first error suing is printed. and when Other
Font is the special value :NOT-FONT, the sccond
sming is prinicd. The Use Value of Object but-
ton is used to insert a reference 10 a selected object,
here, the value of the Font Name widget, which con-
tains the current filc name. The Another Error
Check buuton causcs another If value- is and
Error String pairto appear.

Change ay Enable for "Font Name™
] bh' Cancel}

Use Valve of Objeat
Paadbibadiidbatatad

3ot asadle with: oK

Dpsession:
S (1! gv OTHER-FONT :selected)

NID

¥

seuiting tasbie vsim: inL

Figure 4:
The Gilt window that allows the designer 10 specify that
the enable property of a widget depends on other
widgels. When the Expression returns NIL, the
widget is shown *‘greyed-out.”

meny, then sclecuing the Font Name widget, and finaily
hitting the Use Value of Object buiton, the designer
can specify the appropriate dependencies. Since
ger-font-from-file cxpects a suwing, no further
transformations are needed. If the font is not found, the
get-font~from-file func on rctums crror valucs, so
the Error Check window is used o specily the handling
of this (Figure 3). The designer types the appropriate error
rcturn values and response surings into this window.

Next, the vaiue of the cntire dialog box is specified as the
value of the pair of radio-Luttons Standard Font and
Other Font, and now the dialog box will retum a singie
value, computcd bascd on the settings of the widgets.

Finally, the designer needs o spccify when the various
widgets should be disabled (greyed out). First, the designer
selecis the Font Name text ficld, and then brings up the
Change my Enable window (sce Figure 4). Note that
this window has the same generat form as the Value Con-
ol window, but simply conuols a different property of the
widgets (the enable flag rather than the value). Next, the

designer selects the Other Font radio button and hits
the Use Value Of Object button. This makes the
Font Name enabled (not grey) whea Other Font is
chosen. Similarly, the family, face and size buttons under
Standard Font arc enabled when Standard Font
is selected.

4. Filtering

Each widget in Gamet will always first compute its defauit.
value, which is then assigned o the widget’s slot (instance
variable) called : VALUE.? This value can then be filtered
10 derive the value seen by application programs, which is
set into the slot called : FILTERED-VALUE. This is im-
plemented as a constraint that sets the value of the
:FILTERED-VALUE slot whenever the value of the
:VALUE slot changes. The default constraint simply
copics the value. Experience has shown that most filter
expressions are rather short, often only one or two lines.
Sometimes, it will be necessary 0 have longer, complex
transformations or access to application-specific
functionality and data. Here, a convenuonal text editor
would be used to create a function which will then be
catled by the filter expression entered with Gilt. However,
the function will be independent of the particular widgets
used since. Gilt provides transformations of the argumenis
and return values from the function.

As was shown in the example, Gilt provides a number of
ways 10 specify the appropriate filtering of data and control
in the user interface, so the application code is independent
of the particular widgets used and the label strings shown
10 the user. All of these ransformations use the same,
standard Control windows shown in the previous ex-
amples. The following sections show how the various
tasks that require call-backs in other wolkits are performed
in GilL

4.1 Preparing Data for Applications

Many call-backs in widgets simply filter the output value to
convert it 0 a form necded by the application program.
For cxampie, for Figure 1, you might need as many as 13
diffcrent call-backs in other wolkits 1o gencrate the single
font value 10 be retumed. In Gilt, the value of the dialog
box is available in a variable, without requiring a call-back.

Unlike most toolkits, Gamnet provides values for groups of
widgets. For example, the default value of a radio buuton
sel is the name of the radio buuton that is selected, or NIL if
none are. For a set of check boxes (that allows multiple
sclections), the value is a list of the selected buttons. The
innovation in Gilt is that the designer can specify alter-
native values for widgets. In the example, the value of the
pair of radio buttons Standard Font/Other Font
will be a font object.

Many of the desired transformations of the values can be
achieved by simple type conversions: from strings to
keywords, atoms, numbers, etc. Therefore, Gilt provides a

A1 slot names i Gamet stan with 8

21

UIsT 91

Hilton Head. South Carolina

93.-

Second Gamet Compendium

number of built-in dawa wransformations:

o String 10 Lisp atom (¢.g. "Bold" w ’* BOLD).

o String 10 Lisp keyword (c.g. "Bold" to : BOLD).

o String Lo index of item in the set of butions (e.g. "Bold"
to 0).

 String (0 number (e.g. *10* 10 10).

o Integer range to a dilferent integer or float range.

Similar transformations. would be appropriate for a builder

generating other computer languages, like C or Pascal,

which might automatically create enumeraicd types, sets,

bit vectors, or named constants.

Gilt wies 10 automatically pick the appropriate transfor-
mation. There are two lechniques uscd to guess what is
appropriatc.

First, the designer can (ype an example value into the
Resulting Filtered Value ficld at the bottom of
the Exported Value Control window (Figure 2-a).
In this case, Gilt will ury 0 guess a wransformation that will
convert the current unfitiered value into the specified value,
using the above rules. If none of the buill-in transior-
mations is appropriate, then Gilt creates a case statement.
The designer can then operate the widget to put it inwo
different states (and therefore o change the unfiliered
value), and type the desired filtered value for each case.
This allows arbitrary wransformations (e.8., converting the
German “"Fetcdruck™ or the French "Gras™ 1o
:BOLD). The resulting code for the filter is shown in the
Filter Expression window.

The second option is used when the designer eniers a pro-
cedure intwo the filter expression, and then selects a widget
to supply the value to a parameter of the procedure. Here,
Gilt tries to find an appropriate transformation so that the
widget valuc will be filiered into the required type of the
parametcr. This is the technique used in the example. A
Value Control window will pop up to confirm each
transformation, and also 10 rcquest the designer to specify
the ransformauon if Gilt cannot infer it

A number of standard procedures are provided in a pap-up
menu, so the designer can oficn select a procedure for the
filter expression rather than typing it. The provided
routines will gransform a string into a file pointer, a string
mto a font pointer, numbers or a string into a color,
keywords into a font, etc. If one of these is selected from
the menu, the appropriate code is entéred into the Filtex
Expression field. Bccause these routines take abstract
values as parameiers, and retum a value of the appropriate
type (such as a font object), the implementaton of the
routines is entircly independent of the widgets. In fact,
standard, butlt-in routines, such as the Lisp function
probe-~file, can be used in many cases.

Gilt can execuwe the fiiter cxpressions, including any
procedures entered by the designer, by using the Lisp inter-
preter. Therefore, when Gilt is put in “‘run-mode’ the
actions will happen just as they will for the end user. Gilt
first checks to make sure that alf procedures arc defined, in
case the designer has entered an application-specific proce-
dure that is not impicmented yet. In this situation, Gilt

Figure S:

The color sclection dialog box created using Gilt
(naturally, this is i color on the screen). There are a
number of dependencies among the widgeis that were
defined by demonstration. If one of the color buttons on
the left is selected, the sliders adjust to the appropriate
position for that color. if the sliders are moved, the
highlight in the color buttons (here shown around
Mot if-orange), goes o the sppropriate color or
goes off. The rectangle in the upper center always
shows the current color. The filtered value of the rec-
tangie is its color, and the value of the dislog box is
defined as the fillered vaiue of the rectangle.

requests the designer o give an example of the value the
function would return.

Sometimes, the value of a widget might be computed based
on the values of muliiple other widgets. In the exampie of
section 3, the value <f the Standard Font radio builon
is computed based on the values of three sets of buttons.
The defauit expression creates a list out of the values, but
by editing the filter expression, it is easy to create a record
or structure instead of a list, or to process the values in
various ways. In Figure 2-b, the get -standard~-font
routine is called on the values of three widgets to retumn a
single font abject.

Gilt allows decorations 10 be added o the dialog bozes,
such as rectangies, lines and labels. These normally do not
have a value, butl they can be given one using a Value
Control window. Tor example, the rectangle at the up-
per center of Figure 5 shows the current selected color.
The value of this rectangle should be its color. To achieve
this, the designer can type (gv :self :COLOR) w0
the Filter Expression field? To make this a liile
easier, the designer can choose the desired field of the
sclecied object from a pop-up menu.

The user can check that the filter expression is achieving
the desired result in two ways. First, the interface can be
exerciscd 10 test the code. Second, the Filter
Expression field shows the Lisp code that is being uscd.

Igv sands for “'get value'* and it looks 1n the specified object for the

November 11-13, 1991

UIST 91

specalied slot,
215

-94

Separating Application Code from Toolkits

In the future, we will be investigating other techniques for
showing the transformations that will be usable by non-
programmers. For example, the filter expressions might
use normal arithmetic expressions, or we might create a
special graphical programming language.

4.2 Error Handling

Call-back procedures in other loolkits are often used 0 -

check for error values, especially in text input fields. Gilt
provides a standard ermor-filtering mechanism that min-
imizes the connections between the error checking code
and the widgets. The designer can bring up the Exror
Check window (Figure 3), and type a value into the if-
value~-is field. If the filtered value for the widget is
ever equal to the i #-value~is value, then an error has
occurred. If the Error String field contains a swring,
then a ervor dialog box is popped-up showing that sxing.
The string can embed references to other widgets using the
Use-Value-of-Cbject buuton, for example, 1o show
the incorrect value. Alternatively, if the Error String
field contains an expression or function call, then it is ex-
ecuted.

Alternatively, an expression using the value of the widget
can be entered into the i f-value~is field, which should
retun T if an error should be reponied. For example, o
report an error if an input number is odd, the designer could
simply enter (oddp (gv :self
:FILTERED~VALUE)). If the filter expression itself
returns an error message string, then the if-value-is
might just test if the filiered value is a string, and the
Error String would just be (gv :self
:FILTERED-VALUE).

There can be multiple if-value-is and Error
St ring pairs, which would be uscful, for example, for a
font finding routine that returned different values o tell if
the file was not found, or if the file was not a valid font, as
in Figure 3. The get-font-from-file filter will
return a font, or NIL if the file is not found, or
:NOT~FONT if the file is found, but it is not a font.

4.3 Preparing Data to be Shown to the User
Most icolkiis roquire thai ihe designer creaie additional
procedures to ser the widgets based on application- specific
data. For cxample, when many dialog boxes are made
visible, the values of some widgets should be set to a par-
ticular value. If a widget should always have the same
value when the dialog box appears, then the designer can
simply supply this value by example, as in other interface
builders like Druid (12]. However, it is very comman for
the inital values for widgeis w depend on application-
supplied data. For exampie, when Lhe font dialog box is
made visible by an application, it should rcflect the font of
the selected object, or if there is no object selected, then the
current global default. The next sections discuss how Gilt
allows this © be specified easily.

4.3.1 Defining Parameters to the Dialog Box
When a window is designed in Gilt, parameters (o the win-
dow can be specified. along with an example current value

2186

UIST'91

Change ay Value for “etd-or-other-foat”

et walne with: o | aeply | canoeif

ot Ose Velve of Oml Use Value of hn—t"l
(it (1s-a-standacd-Cont PARAMY l

“Standazd Fosc:*
*Othar Fame:"}

Rasuiting vaioe: { “Standard Posc:”

Figure 6:
The Gilt window to cause the displayed value of a
widget o change based on other widgets. Here, the
Standard Font/Other Font radic buitons of
Figure 1 are set based on the value of the parameter.
The designer only had to select the i s-a~standard-
font procedure from a menu, the rest of the expression
was entered by Gilt as the widgets in Figure 1 were

operated. -

for the parameter. If an application wams to display a
window designed in Gilt, it can simply call*
(Show-Dialog dialog-name parami param2 . ..)

For example, the font dialog box of Figure 1 would take a
single font object as a parameter. Thus, the application
causes the dialog box to appear while still being independ-
ent of how the parameters are used o set the widgets.

For *‘modal™ dialog boxes (that require the user 10 say OK
or CANCEL before doing other operalions), the
Show=-Dialog routine will return the value of the dialog
box. The designer can specify the value of the dialog box
using a2 Value Control window, as was shown in the
example. For non-modal dialog boxes, Show-Dialog
will return immediatcly, and the designer can atach a call-
back procedure to the OK button. Of course, this call-back
will be passed the filtered value of the window, s0 it will be
independent of the widgets that are used in the window 10
enter the value.

4.3.2 Using the Parameters

To set the value of a widget based on the parameters, the
designer uses the Change my Value window (see
Figure 6). The primary difference from the Value
Control window shown earlier is that here we are chang-
ing the value shown to the user, rather than simply filtering
the value returned by the widget. However, this window is
very similar 10 the Value Control window, ang the in-
terface (o the designer is essentially the same.

The result of the expression should be an appropnate value
for the widget. For example, Figure 6 calculates the sting

“In a language that does not support functions with & vansble number of
arguments, 2 Git-bke buldder could create a dalferent
show-<dialog-name> routine {or each window desy

Hilton Head, South Carohna

95 -

Second Garnet Compendium

Copying C32::Linel’s X1 to

C32::Linel’s :¥1
qi. LEIT emaverted -"EEEE
‘i‘:HEIUIcuruni-ll-tEE§§§§3

(@)

" Copying User::Rl’s :lelt to
Gilt:.Line9's :¥1

HEI LXFY omsvertsd enxlI:!
HEI TP cowwerted hsac::]

!!' CIDIN conwverted to:j..l
!Elzllnlle-nvnmllozlil

®

Figure 7:

This dialog box (which uses the Gamet widget set in-
stead of the Motif widget set used by the other figures in
this paper), repeats the check box, the label and the text
type-in field. The conwelling expression for (a) might
be {((T :LE¥T :TOP) (T :WIDTH :HEIGHT)),
where the T controls the radio buiton, the second ele-
ment is used in the label. and the third is used as the
default for the text input field. The user can then tum
on and off the desired slots using the check boxes, or
type a new name.

name of the branch of the radio button t0 be selected. Of
course, designers can simply type in the appropriate code,
but Gilt provides demonstrational techniques to make this
easier. The designer can operale the widgets to put them
inio the appropriate state, and then give the expression that
will determine when that state is 10 be used. For example,
for the font dialog box, the designer could select the
Standard Font/Other Font widget, and bring up a
Change my Value window (Figure 6). Then, the
Standard Font radio button would be pressed, and the
designer could hit the Use Value of Parameter but-
ion. Then, the designer would have to edit the expression
1o retun T when the font was a standard font using the
ig~a-standard-font procedure. By default, the
other value of the radio buitons will be used otherwise, so
nothing is needed for that case. Next, the designer would
bring up Change my Value windows for the other
widgets, such as Font Name, and wrile expressions 0
extract the appropriate informauon from the font object
parameter.

4.3.3 Dynamic Creation of Widgets

Sometimes, a parameter might specify the aumber of
widgels that necd o be created. In this case, the designer
can show by example the set of widgets to be replicated,
seicct them, and bring up a Replicate Control win-
dow, which is similar to the Change my Value win-

dow, The expression in this window is expecied 10 retumn
an integer w0 tell how many copies of the widgets are
desired. Altzmnatively, the expression can retum a list of
values, in which case, the number of copies depends on the
length of the list. Here, each copy is assigned the ap-
propeiate element from the list. For example, in Figure 7,
the application might supply as a parameter w the dialog
box a list of slot names to control how many times the
check box, the label and the text input field are repeated.

4.4 Internal Control

In other wolkits, another set of call-back procedures are
often needed to control the setting of the value or ther
property of one widget based on the value of another, or 10
bring up a new dialog box when a button is pressed. The
next sections discuss how Gilt atlows these 0 be specified
using filter expressions.

4.4.1 Value Dependencies

Sometimes, when a widget is operated, this should cause a
different widget (0 change its value. For example, when
the user hits on a color button in Figure 5, the sliders
should move o show the appropriate values for that color.
Gilt provides a convenient mechanism for specifying this
using the same Change my Value window as for
having a widget's value depend on a parameter (Figure 6).

The designer selects the widget that should change (for
example, the red slider of Figure 5), and brings up a
Change my Value window. Next, the widget that it
should depend on (here, the color button set) is selected,
and the Use~vaiue~-of-Object button is hit. This will

generate the expression
(gv Color-buttons :FILTERED-VALUE)

but for the red slider, only the red component of the coior
should be used, so the designer would edit the expression to

be
(gv Color-buttons :FILTERED~VALUE :RED)

Now, whenever the color buttons are operated, the red
slider will be set correcty. The other two sliders would be
fixed similarly.

Sometimes, widgets may need to be replicated based on the
value of another widget. In the Xerox Star and Viewpont,
menus only show legal values, rather than greying out il-
legal values. For example, in a font-choice dialog box, if
different fonts have different sizes available, the com-
ponents in Lthe menu of sizes must be dynamically changed.
The Replicate Control window discussed in secuon
4.3.3 is used to conuol this.

4.4.2 Specifying Other Dependencies

The previous sections discussed how the value of a wuiget
can be controlled. In many cases, howcver, other
propenties of widgets may need 0 be set, such as whether 1
is enablcd or not (grcyed-out). This is handled in a uniform
way, using a window similar to the Change my Value
window. The designer selects the widget to controlled,
specifies the desired property from a menu, and the ap-
propriate window is brought up.

November 11-13, 1991

UIST 91

217

Separating Application Code from Toolkits

4.4.2.1 Enabling

One of the most common dependencies is to enable widgets
based on other widgets. As shown in the example of scc-
tion 3, the designer can operate a widget 10 have the ap-
propriate value, then enablc or disable the dependent
widget, and Gilt will fill in the values for the Change my
Enable (Figure 4). In trying 10 guess appropriate conirol
expeessions for dependent slots, Gilt knows about check
boxes and radio buuons being on or off, wext fields being
empty or having a value, and numbers being zero or non-
zem. In addition, if the Change my Enable window is
for a set of selectable items (such as a menu or a panct of
buttons), the controlling widget can return a list of values,
each element of which controls an iiem. For example, in
Figure 8, the menu of font sizes will have a Change My
Epable expression that compules the list of valid font
sizes bascd on the sclecied font in the left menu. Although
an application function is needed, the function will be inde-
pendent of the particular widgets used, since it will take a
fom object and rcuwn a list of valid sizes. Gilt will
automatically create an expression 1o cnable the items that
correspond (o the values in the list and disable the others.

4.4.2.2 Other Properties

All the other properties of widgets can be controlled in the
same way as enabling. Widgets can be made 10 be visible
and invisible by bringing up a Change my Visible
window. Most widgets also have additional propenies
which can be set, such as their color or font. To change Lhe
color of an object, the Change my Color window is
used. For example, to change the color of the red slider
based on the value it returns, the designer could simply
select the red slider, bring up the Change my Color
window, seiect the slider again, hit the Use-Value-of-

Object buiion, and then edit the expression to be’
(Make-Colar (gv :self :FILTERED-VALUE)
0 0

Using the dependency control on various propertics is also
useful for decorations such as rectangles and labels. For
example, the color of the rectangle in the center of Figure §
¢an be made to depend on the three sliders in this way.

4.4.3 Sequencing of Dialogs

Another common intemnal control action that sometimes re-
quires call-backs is for a button to cause another dialog box
to appear. Gilt, like other interface builders, allows this to
be demonsirated, by simply opcrating the bunon, and
showing which dialog box should appear. However, unlike
other systems, Gilt also allows the initial values of widgets
in the sub-dialog to be set. Windows similar 0 the
Change my ... windows appear that allow the values
of the parameters (0 the sub-dialog (o be specificd based on
the valucs of the parent dialog box. Gilt will automaticaily
create the code o call Show-Dialog in the appropriate
way. [f the sub-dialog is modal (which is the usual case),
then the value of the sub-dialog is assigned by default as

*The slider’s value is 2 number, but we necd » color object for the color
propeny. Make-Color is » umdand rouunc that takes numbers
representing the red, green snd blue values and retums a color objcct.

Figure §:
In these Motif-style menus, ths various font sizes in the
menu on the right become enabled or disabied depend-
ing on the sizes available for the font that is sciected in
the menu on the left

the value of the buiton that caused the sub-dialog w0 be
displayed. Of course, the designer can control this using
the Value Control for the button.

If the sub-dialog is not modal, then the end user will be
allowed 10 operate widgets in both windows. Gilt supports
cross-window dependencies, so that a value in one dialog
box can depend on a value in another dialog box.

5. Editing and Saving

To edit the value of any of the filter expressions for a
widget, the designer can simply select the widget and bring
up the appropriate Contzrol... oOr Change my. ..
window. The designer can then edit the text of the expres-
sion. Aliernatively, if the user demonstrates new transfor-
mations, these will replace the existing ones as appropriate.

Gilt provides a special feature 10 make it easier to convent
an inwcrface 0 a diffcrent natural language. Aler a value
transformation has been specified, the next time the desig-
ner edits the displayed label names, Gilt will pop-up a
question {o ask if the corresponding exported values should
change also. If the designer says "no”, then the value fiiie:
function is automatically changed so that all the new label
strings will siill produce the same old values, so any code
that uses the values will not need (o be changed.

Other special features make editing the widgets easier. Gilt
provides a ‘*Replace widget’” command, which allows, for
example, a set of buttons o be replaced by a menu. As
many of the properties as possible are retained, including
the label names and the filter expressions. In addition, the
filler expressions can be copied from one widget io
another. Finally, because the more complex filier
procedures and application-specific call-backs are calied
with abstract parameters (such as keywords), they usually
will not need o0 be changed when the widgets are edited.
We will be investigating other lechniques for editing in the
future,

218 UisT 91

Hilton Head, South Carolina

97 -

Second Gamet Compendium

As was mentioned previously, the expressions are im-
plemenied as constraints attached w0 the appeopriate
propeniies of objects. Garnet has a built-in mechanism for
saving any objcct as a Lisp code file, including all of its
constraints [10], and this is used by Gilt. Thercfore, all the
filter expressions are output automatically along wills the
uscr interface definidon. Since the output is textual Lisp
code, it is possible for programmers 10 edit the file direcily,
but we expect this Lo not be necessary.

6. New Kinds of Widgets

The wechniques that have been described are not limited ©
only the built-in widgets in the Garnet toolkits. If the user
wanls a new kind of widget, then it can be created cither by
coding it by hand or using the Lapidary design tool {7].
The new widget can then be dynamically loaded into the
Gilt palctie, and used like any built-in widget.

Al of the widgets in the Gnmel toolkit are conu'ol!ed
through the same protocol, which includes a specification
of what the properties of the widget are and the types of the
properties (string, boolean, integer, list, e1c.). This allows
the appropriatc Control windows to be crcated. For cus-
tom widgets, the designer will need to conform (0 the stan-
dard protocol. Lapidary has built-in mechanisms to help
with this for wndgels created using it The infcrencing of
the filter cxpressions is based on the type of the propertics,
so the decmonstrational tcchniques described in this paper
can be usced for designer-created widgets as well. As an
example, the color selection buttons on the left of Figure 5
are not a standard widget, but were partially coded by hand
and then read into Gilt for the dependencies (o be specified.

. Another intercsting feature is that a set of widgets can be
saved, along with their interdependencies defined in Gilt,
and used as a prototype in other interfaces. For example,
the Standard Font group {rom Figure 1 could be read
into the Gilt palette, and then placed in other dialog boxes.
Duc 0 the prototype-instance object model in Gamet, no
exura mechanisms are necded in Gilt 10 support this.

7. Status and Future Work

An carlier version of Gilt has been relcased 10 all Gamet
users.® The version described here has becn mostly im-
piemented, and is expected 10 be finished and reieased in
the next few months.

In the future, in addition to releasing this version of Gilt for
general use, we would like 0 investigate combining some
of the features of Lapidary with Gilt, so that the designer
can specify constraints on the widgets, for example 0 make
decorations or the entire window grow if a widget gets
bigger. It has been suggesied that a wiring diagram ap-
proach to specifying the interdependencics among widgets
might be casicr 1o use. We will investigate allowing the
designer to draw wires among the widgets to show the flow

*The Gamct sysiem is available for free from CMU, but you need 10
have » license. If you are inieresied in unng Gils and Gamet, plicase
contact the suthor or send electranic mail 0 gacnetcs, cmu, adu.

November 11-13, 1991

of values and enabling. This might also be helpful as a
debugging (00l w0 show where the dependencies are. Other
debugging and maintenance aids will also be added, such
as browsers 10 show all the filier expressions, and the
procedures and global variables used in them. Finally, we
will add some of the demonstrational echniques from
Peridot and Druid that neaten the display as widgets are
drawa.

8. Conclusion

The Gilt interface builder contains an number of innova-
tions that significantly improve the separation of applica-
tion code from toolkits. By identifying the most common
tasks that call-backs are used for, Gilt is able w supply
built-in mechanisms 10 handie them. Using 3 standard style
of window, the designer can enter short filter expressions.
Because many of the tasks involve straightforward (ilier-
ing, Gilt can often infer appropriaie transformations from
examples of the desired output or actions. Even when more
complex transformations are required, and which use
application-specific procedures, the application code s
completely independent of the actual widgets and the
names used in the uscr interface. Although Gilt is im-
plemented in Lisp, which makes the dynamic execution of
the entered code much easier, the general techniques are
appropriate for conventional compiled languages and for
interface builders for conventional olkits. Therefore, the
techniques could be readily applied 10 t0day’s user inter-
face 1ools.

The mechanisms that are described here make it much
faster to build dialog boxes with interdependencics among
the widgets. However, we expect their main advantage to
be the improved maintainability of the resulting code. For
example, it should be much easier with Gilt than most other
interface builders to convert a user interface 10 a different
natural language or swiich between different forms of
widgets (e.g.. from menus to buutons), or even different
widget sets (¢.g., from Mouf to Openlook). We will be
exploring the cflects of these features as Giit becomes
widely used by the Garnet community.

Acknowledgements

Andrew Mickish implemented the features descnibed in this
article. Osamu Hashimoto also contributed to the design
and implementation of Gilt Brad Vander Zanden, David
Kosbie, Andrew Mickish, Osamu Hashimoto, Bemita
Myers, and the referees provided useful comments on this

paper.

This research was sponsored by the Avionics Lab, Wright
Research and Development Center, Aeronauticai Systeras
Division (AFSC), U. S. Air Force, Wright-Patterson AFB,
OH 45433-6543 under Contract F33615-90-C-1465, Arpa
Order No. 7597.

The views and conclusions contained in this document are
those of the authors and should not be interpreied as

nting the official policies, either expressed or im-
plied, of the U.S. Government.

UIST 91

219

Separating Application Code from Toolkits

- 9%

References

1. Paul Barth. "An Object-Orienied Approach o Graphi-
cal Interfaces®. ACM Transactions on Graphics 5, 2 (April
1986), 142-172.

2 Alan Bomning. "The Programming Language Aspects of
Thinglab; a Constraint-Orienied Simulation Laboratory”.
ACM Transactions on Programming Languages and Sys-
tems 3, 4 (Oct. 1981), 353-387.

3. Luca Cardeili. Building User Interfaces by Direct
Manipulation. ACM SIGGRAPH Symposium on User In-
terface Sofiware and Technology, Proceedings UIST 88,
Banff, Albena, Canada, Oct., 1988, pp. 152-166.

4. James D. Foley, Christina Gibbs, Won Chul Kim, and
Srdjan Kovacevic. A Knowlcdge-Based User Interface
Management Sysiem. Human Factors in Computing Sys-
tems, Proceedings SIGCHI'88, Washington, D.C., May,
1988, pp. 67-72. ’

S. Tyson R. Henry and Scott E. Hudson. Using Active
Data in a UIMS. ACM SIGGRAPH Symposium on User
Interface Software and Technology, Proceedings UIST'88,
Banff, Alberta, Canada, Oct, 1988, pp. 167-178.

6. Brad A. Myers. Creating User Interfaces by
Demon:iration. Academic Press, Boston, 1988,

7. Brad A. Myers, Brad Vandcr Zanden, and Roger

B. Dannenberg. Creating Graphical Interactive Application
Objects by Demonstration. ACM SIGGRAPH Symposium
on User Interface Software and Technology, Proceedings
UIST 89, Williamsburg, VA, Nov., 1989, pp. 95-104.

8. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Ed Pervin, Andrew
Mickish. and Philippe Marchal. "Comprehensive Support

for Graphical, Highly-Interactive User Interfaces: The Gar-
net User Interface Development Environment”. /EEE
Computer 23, 11 (Nov. 1990), 71-85.

9. Brad A. Myers. Graphical Techniques in a Spreadsheet
for Specifying User Interfaces. Human Factors in Comput-
ing Systems, Proceedings SIGCHI'91, New Orleans, LA,
April, 1991, pp. 243-249.

10. Brad A. Myers and Brad Vander Zanden. "An En-
vironment for Rapid Creation of [nteractive Design Tools™.
The Visual Computer; International Journal of Compuser
Graphics (1991), 10 appear.

11. DanR. Olsen, Jr. A Programming Language Basis for
User Interface Management. Human Factors in Computing
Systems, Proceedings SIGCHI'89, Austin, TX, April,
1989, pp. 171-176.

12. Gumminder Singh, Chun Hong Kok, and Teng Ye
Ngan. Druid: A Sysiem for Demonsmrational Rapid User
Interface Development. ACM SIGGRAPH Symposium on
User Interface Software and Technology, Proceedings
UIST90, Snowbird, Utah, Oct, 1990, pp. 167-177.

13. SmethersBames, P.O. Box 639, Portand, Oregon
97207, Phone (503) 274-7179. Prototyper 3.0.

14. Ivan E. Sutheriand. SkeichPad: A Man-Machine
Graphical Communication Sysiem. AFIPS Spring Joint
Computer Conference, 1963, pp. 329-346.

15. Brad Vander Zanden, Brad A. Myers, Dario Giuse and
Pedro Szekely. The Impornance of Indirect References in
Constraint Models. ACM SIGGRAPH Symposium on
User Interface Software and Technology, Proceedings
UIST 91, Hilton Head, SC, Nov., 1991.

220 UIST 91

Hilton Head, South Carolina

Conventional interface builders allow the user interface
designer 10 select widgets such as menus, butions and scroll
bars, and lay them out using & mouse. Although these are
conceptually simple w use, in practice there are a number
of problems. First, a typical widget will have dozeas of
properties which the designer might change. Insuring that
these properties are consistent across multiple widgets in a
dialog box and multipie dialog boxes in an application can
be very difficuit. Second, if the designer wants o change
the properties, cach widget must be cdited individually.
Third, getting the widgets laid out sppropriately in a dislog
box can be tedious. Grids and alignment commands are
not sufficient. This paper describes Graphical Tabs and
Graphical Styles in the Gilt interface builder which solve all
of these problems. A “graphical tab” is an absolute position
in a window. A “graphical style” incorporates both property
and layout information, and can be defined by exampie.
named, applied to other widgets, edited, saved 1o a file, and
read from a file. If a graphical style is edited, then all
widgets defined using Lhat style are modified. In addition,
because appropriate styles are inferred, they do not have o
be explicitly applied.

KEYWORDS: User Interface Builder, User Interface Man-
agement System, Demonsirational Interfaces, Styles, Tabs,
Gamet, Direct Manipulation, Inferencing

INTRODUCTION

The Gilt Interface Builder allows dialog boxes and similar
user interface windows 0 be created by selecting widgets
from a palette and laying them out by direct manipulation
(see Figure 1). Two sets of exiensions have been added
to Gilt 1o make it significantly easier 1o create these user
interfaces. The first set helps eliminate many of the call-back
procedures which communicate 10 application programs.
This was described in a previous paper{8]. The second set
of extensions make it easier and faster for the designer to
Perrrussion ta copy without fee ail or part of ths materisl IS
granted provided tRat the copias are not made or dis.nbuted tor
direct commaercial advantage, the ACM copyright notice and the
tue of the publication and its date sppear, end notice is given
that copying is by permission of the Assaciation for Computing
Mactunery. To copy otherwise. or 1o republish, requires s fee
and/oe specific permission,

1992 ACM 0-89791.850-X/92/0011/0117...41.50

99 - Second Gamet Compendium
Reprinted from ACM Symposium on User Interface Software and Technology,
Monterey, CA, Nov. 15-18, 1992. pp. 117-124.

Graphical Styles for Building User Interfaces
by Demonstration

Osamu Hashimoto Brad A.Myers
C&C Systems Research Labs. School of Computer Science
NEC Corporation Carnegie Mellon University
4-1-1 Miyazaki, Miyamae-Ku, 5000 Forbes Avenue,
Kawasald, Kanagawa 216, Japan Pinsburgh,PA 15213
osamu@tsl.cl.nec.co jp brad myers@cs.cmu.edu
ABSTRACT achieve the desired appearance for the user interface, and is

described here.

In most toolkits, the widgets have many properties that
the designer can set. such as the color, font, label string,
orientation, size, the minimum and maximum vaiues of a
range, etc. Many widgets in the Motif widge: set, for
example, have nearly 5C different properties that can be set
Most interface builders, including Gilt, provide *property
shee 3™ that alfow the designer (0 specify the desired values
(see Figure 2). Howeves, it can be quite difficuit and time
consurning !0 find and set all of the appropriate propesties.
To show the magnitude of the problem, many applications
comntain over 2000 widgets, and the properties for each must
be set in 3 consistent manner. A study has shown that
achieving consistency in an interface is a frequeatly cited
problem [9].

Another problem for interface designer ‘5 laying out the
widgets in the window. When the de: .gner places widgets
with the mouse, they tend to be ureven and look sloppy.
Therefore, most builders provide giids and alignment com-
mands. However, these can be clumsy to use, and they do
not insure that different dialog boxes will have a consis-
tent alignment (for example, that the titles will always be
centered at the top of th» window).

To help solve these problems, Gilt introduces the notions of
Graphical Tabs and Graphical Styles. These are based on
the styles and tabs in text editors such as Microsoft Word.
A “graphica tab” is simply a horizontal or verucal posiuon
in the graphics window 1o which objects can be aligned.
A “graphical style” is a named set of properues and layout
information, which can be applied to widgets. The designer
can edit 3 widget so it has the desired propertics, select it,
and then define a named style based on it. The values of the
properties and the position of the widgets will be associated
with that style name. The style can then be applied 1o other
widgets.

Furthermore, Gilt will iy 10 automaticaily guess when (o
apply a styie, so the designer does not have 0. By guessing
the appropriate properties and layout, Gilt makes the user
interface design process significantly faster, since users can
quickly and imprecisety place widgets, and the system will

November 15-18, 1992

UIST92

Graphical Styles For Building Uls by Demonstration

thhd.defadtnﬁaumudnrsym!ib?mdu{ﬂmd
Mlll.mamfumdp!opuwmdponmmm
likely 0 be carrect.

A set of styles and tabs can be written to a file o form
n&mmsm:whmnmbeuudmmmu

applications have a consigtent appearance. If a
style is edited, all widgets that ars based on that style are
awomaticaily updated, so that the interfaces will continue 0
be consistent.

Gilt is a part of the Gamet system(7]. Garnet is a compre-
hengive user interface development eavironment containing
many high-level tools, including Gilt, the Lapidary inter-
active design t00l{6), and others. Gamet also contains 2
camplete toolkit, which uses a2 prototype-instance object
model, constraints, and 2 ion of the behaviors from
the graphics. Gilt stands for the Garnet Interface Layout
Tool, and it supports interfaces built using either the Gamnet
look-and-feel widget set or Motif look-and-feel widget set.
(The Motif-style widgets in Garnet are impiemented on top
of the Garnet Toolkit intrinsics and do not use any of the Xtk
code in C. Akhough they look and behave like the standard
Mmfwﬂ;eu,mcyuvednmmnmmfuume

uting conveational compiled languages.

AELATED WORK

Of course, there are a large number of commercial and
rescarch interface builders that lay out widgets, includ-
ing the Prototyper for the Macintosh, UIMX for Motif,
DialogEditor{1), the NeXT Interface Builder{14], Druid{11)
and YUZU{12]. All of these have the same basic structure:
there are two or more windows. Ope is the work window
where the user interface is being created, and another is the
widget window, sometimes called the “paletie” containing
the widgets that can be placed. (Typically, in addition to the
standard interaction techniques like menus, radio butions,
check boxes, and scroll bars, there are also decorations like
rectangles, lines and text labels that can be added (0 the
picture. In this paper, these are all included when the word
“widget” is used.) The designer selects 2 widget from the
palette and places it in the work window using a mouse.
Usually, the designer can change the position and size of
widgets using the mouse, and edit other properties using
dialog boxes or property sheets. The builders also provide
many editing functions such as moving, copying, deieting,
and aligning widgets, and reading and writing to 2 file.

Peridot{S] guessed alignment of graphica! objects using
global ruies. Druid(11] applies a similar technique to widget
alignment. Whea the designer adds a new widget in a
window, Druid immediately tries 1o find other widgets in the
window that the new widget might be aligned with. For
example, when the designer creates a label below another
existing label, Druid guesses that the new iabel and the

Font Selection::
W BIG o MOdLuR W SALL
Toan
_100lé _jTtslic _IOedesline.
Pont from. Pile: [viad
- Ma#’Gadgcc
lﬂilll f_-"‘"“ . H] ey
. - i frenel3 . e
o habal: B m{
s CobalZ \
v,_...w) auq!mu
Label.
3 l mxyl M[
Wanif~Ranhgreund
Butld & save. | belere selected }
BBV seaad... | Delete ait i
e To Top | UndoLast Delete]
N 70 Borzom | rroperties... |
vz |38
mm?.—- Duplicate l Align... f
select All] ouse |
Selected Obiect: XR-DEBUG:MULTI-TEXT~333T4

Figure 1: Gilt Main Windows

The top is the wock window where 2 dialog box for a text
editing application is being defined. The middle window is
the palette of Garnet Motif gadgets that can be added to the
work window. The bottom window is the main Gilt control
panel containing the Gilt commands. The position and size
of the selected widget is echoed in the text boxes at the left
of this window.

118

UIST82

Monterey, California

101 -

Second Gamet Compendium

Figure 2: Gilt Property Sheet Window
The Property Shees window for a set of check boxes. The
designer can press with the cursor over any of the texi fields,
and type a new value. Pressing on the icon next to Font or
Foreground-Color will bring up a sub-dialog box.

existing label should have the same left. It pops up a window
30 the Gesigner can confirm the guess, and if the designer says
yes, then Druid adjusts the objects automatically. However,
Druid does not infer other properties of the objects, and the
layout rules are hard-wired, rather than based on the user's
preference, as in Gilt.

- Many interface builders have provided interesting mecha-
nisms for specifying the positions of widgets. For exampie,
FormsVBT{2} and xbuxld [13] use a “glue” model based on
TeX. Glue has a varying stretch, and using the right kinds
of glue between widgets causes the widgets to move ap-
propriately when windows change size. In Lapidary{6], the
designer can select two objects, and define arbitrary layout
constraints between them. The most common constraints
can be applied by using iconic menus. OPUS{3] shows
the specified constraints as wires between the objects. We
feel that the concept of tab stops will be more familiar w0
users and will be easier 10 use than these other approaches,
while still providing most of the needed functionality. Also,
0o previous interactive builder has incorporated a notion of
Graphical Styles, as used in Gilt.

The design for styles and tabs in Gilt is based on their use in
1ext editors, in particular Microsoft Word for the Macintosh.
This text editor allows the users to move a marker in 1
graphical ruler 10 set a tab stop, and if the TAB key is typed,
the text cursor will move to the designated place. To define
a style in Microsoft Word, the user formats some text in the

sne

“_ e |Font S’o.locticna

ernevrrNT e nenrr A -
O PR R

w] v lett-gse. "-e-m:-u‘ vm-m
: wf [A Top wgast, W Cutuind vme-m

" Suhaups: Row-A nl o | canoni]
nl&i‘.” ,a ’
(lvmetween T msoum |
- vm
, e Btram of whndow . 201 et |
© \or OthE m,r'—" Teiess "Nl "anl

Figure 3: Style Editing Window and TabStop Window
Row-Tab A is selected in the work window (top), and is a
horizontal tab that is 20 pixels from the 10p of the window,
as shown by the TabStop Editing window at the bottom. The
string “Font Selection:” is top-justified on Row-Tab A, and
centered horizontally on Col-Tab B, which is centered in the
window, s0 it will move if the window changes size. The
Style Editing window (center) shows that the title is using
the style Main-Title and Col-Tab B and Row-Tab A.

desired way, selects it, and then defines a new named style
based on it. More general text styles are supported in {10].

GRAPHICAL TABS

An importan graphic design principie is that widgets should
be aligned evenly. This means that the edges or centers of
the widgets should be the same. and that they should be
evenly spaced. Furthermore, different dialog boxes should
use the same alignments. For example, if in one dialog box
a set of radio buttons is left justified under a title, and offset
below it by 10 pixels, the same offset and alignment shouid
generally be used in other diaiog boxes.

Graphical 1abs allow these kinds o1 relationships (0 be
defined. A “graphical tab” is a horizontal or vertical position
in a window. A horizontal tab position is specified relative to
the top, bottom or center of a window. Similarly, a vertical
tab is specified reiative (o the left, right or center. This allows
the tabs to move appropriasely if the window is resized. Just
ag with text editor tabs, the designer can specify whether the

November 15-18, 1992

UIST92

119

Graphical Styles For Building Uls by Demonstration

- 102

coana

l’_ﬂ‘“’hﬂvm‘ v Right

Figure 4: Style Editing Window for Relative Position
The position for the radio buttons is defined relative o the
string “Size”.

widgets will be left-justified, centered, or right-justified on
the tab (or top-, centered, or bottom-justified for borizontal
tabs). Since Gamet is implemented on X/11 which uses a
pixel coordinate system, the offsets are specified in pixels.
Gilt names the tabs with letters (aithough user-named tabs
might be added in the future). Figure 3 shows a Gilt work
window with a set of tabs visible. Whether the tabs are
visible ot not is controlled by a command.

New tab stops can be explicitly added by clicking on the
“add 1ab” buttons in the TabStop Editing window shown at
the bottom of Figure 3. Tabs can be selected by pointing on
the label next to the line in the work window. The selected
tab can then be deleted if no styles or widgets are using it.
Tabs can be edited by entering new values into the tabstop
editing window, or the tab stop labels in the work window
act as handles and can be directly dragged with the mouse.
When a 1ab is moved, ail of the widgets defined using that
tabs are also moved.

GRAPHICAL STYLES

A graphical style includes a set of widget properties, and
optionally some position information as well. To create
a new style, the designer modifies a widget (0 the desired
appearance using the conventional property sheets, selects
that widget, and then issues the Define Style command. The
designer must then type a style name into the Stryle Editing
window that will appear. Gilt compares the widget's current
properties with the default values for that widget and copies
all that are different. The widgets used to define the style are
surrounded with a dark outline reciangle in the work window
while the style is being defined or edited (“Font Selection:”

& | cance1]
Chanqé Refeter::]

A props & Pos
« Props ONLY
« Pos. ONLY

. Main~-Title
-, . Sub-Title

Figure 5: Set Style Window

This window allows designers to explicidy set a style. Allthe
current defined styles are listed on the left, and the designer
can choose one, and then specify whether the associaied
properties, position or both should be applied 1o the selected
widget. If the selected style uses a relative position (Figure
4), then the Change Referent button is nol grayed-out, and
can be used to select the widget that the widget should be
relative 0.

Since ail the widgets in the Gamnet toolkit use the same names
and values for similar propesties, a style defined on one type
of widget will often work on other types. For example, radio
buttons, check boxes, and tutton sets all allow the designer
1o specify the orientation (horizontal or vertical) and fonis.
In the top window of Figure 1, all the buttons have the same
style properties. The types that styles are associated with
include strings, buttons (which include radio buttons, check
boxes and button sets), aumeric sliders (which include both
sliders and scroil bars), text input fields, ex.

Styles can also include position information. For example,
a designer might specify that widgets with the Main-Tirle
style should use a very large bold and italic font, and be
centered at the top of the window. The position information
for styles can either be with respect tw a graphical tab stop,
or relative to a previously created widget. For the first type,
the appropriate tab name can be entered into the style editing
window (see the center window of Figure 3). Either or both
of the horizontal and vertical tab name fields can be blank,
in which case no position information is recorded in that
direction.

To specify that a style’s position should be relative to another
widget, the designer selects the referent widget after the style
editing window is displayed. The style window will then
change, as shown in Figurc 4. When a stylc is rclative,
only the type of the referent widget 1s remembered. bor
example, in Figure 4, the style is defined as offset from any
string. This will allow the Button-Below-Label style 10 be
used relative o other strings, which can be in other parts of
the window.

The Set Style window (see Figure 5) allows the designer (o
choose any of the defined styles, and also whether the position
and properties aspects of the style should be applied. When
setting the properties, Gilt checks each property associated

in the top window of Figure 3). with the style 10 see whether the widget accepts that property.
120 UIST'92

Monterey, California

103 - Second Gamet Compendium

" }anucmlr.qu R-s:ylu

_w] save | clear]

Figwre 6: Style Control Window
medowallowsstylestoberudandwnummaﬁle
and style guessing to be tumned on and off. Also, the style
of the selected widget is always echoed at the bottom of the
window.

Co orr So.lcction.)

Co).or Pn.hct.

Figure 7: Inferring Styles

If not, then that property is ignored. For example, a style
defined using radio buitons might have a value for the Text-
on-left-p property, which determines which side the diamond
is on. However, this is not relevant for push buttons (since
their text is inside the button), so it would then be ignored.
For styles with absolute positions, the widget simply moves
to the correct tab stop. For relative posidons, the user can
specify the referent widget.

INFERRING STYLES

Although the styles mechanism as described above is already
quite useful, Gilt goes further and tries to automaticaily
determine when a particular style is appropriate. The Style
Control window (Figure 6) provides three options: no
inferencing of styles, styles applied immediately when they
are inferred, or a prompt-first mode where the designer
is asked if the style should be applied, as in Peridot and
Druid. If the system usually infers the correct style, then the
immediate mode will be the most efficient.

When inferencing is on, Gilt tries to infer a new style

WARNING: Editing that object will conflict ﬂ
with -{ts style: *Sub~Title”.

“™ cancel: change

s make it NOT Da *Sub-Titles

e make L2 be *Tub-TiTle® bul wiil &r extepllon

s edit the Style: 'sub-‘gu.\.o‘ for all objects

Figure 8: Warning Window
This window pops up when the designer edits a widget that
has a style attached to it.

whenever a widget is created or moved. The algorithm tooks
for styles that affect the same type as the widget, and checks
how close the widget matches the style’s position. For a style
with a relative position, in order to find its possible referent
widgets Gilt checks all the widgets of the appropriate type
near the new widget. A list is created of all the styles that
match, sorted according to the distance o the tab stops or
the referent widgets. For example, ir. Figure | the main-tide
and the sub-titles use different styles with different foats and
positions, and Gilt can infer the appropriate style from the
position when the designer places the new string.

Any inferencing system will sometimes guess wrong. Thus,
it is important to provide appropriate feedback so the users
are confident that they are in control and know what Gilt is
doing. In immediate mode, the first style on the style list is
immediately applied to the widget, and the name of the style
is shown at the bottom of the style control window (Figure
6). The widget will also jump to the inferred position and
change appearance. If the inferred style is not correct, the
designer can hit the Try Again button (Figure 6), which will
remove the guessed style and instead apply the next style in
the sorted list. The Undo button can also be hit 1o remove the
guessed style, and return the widget 10 its original paosition
and properties. In prompt-first mode, the sorted list of ail
the inferred styles is presented in a window, with the most
likely selected. The designer can select a different style, if
necessary, and then hit 0K or Cancel.

When a style is defined, it immediately becomes a candidate
for inferencing. This is very useful when a number of
widgets will all be created using the same style. In Figure 7,
after the designer defines a style which centers the text label
below the first scroll bar, when the second scroll bar and labet
are created, the label will automatically be centered. This
highlights an advantage of the style approach over a rule-
based approach as used in Druid and Peridot. Those systems
might have put the label lefi-justified under the second scroll
bar if it was placed closer to that alignment, but Gilt only
matches against previously demonstrated styles, so it is more
likely 10 guess the designer's intentions. This wiil also help
achieve a coasisient design.

November 15-18, 1992

uisT'92

121

- 104

Graphical Styles For Building Uls by Demonstration

EDITING STYLES

When a style is applied t0o a widget, either explicidy or
inferred, Gilt sets up appropriate pointers and back pointers
0 that if the style is ever edited, all widgets using that style
are immediately updaied.

Styles can be edited in two ways. A propenty sheet can be
displayed which shows the current values of the properties
for the style, and this can be edited directly. This property
sheet has the same format as the ones for the standard widgets
(Figure 2). The position associated with the style can be
" edited using the appropriaie dialog boxes (Figure 3 and 4).

Alternatively, the designer can edit the styles in the same
way as they were created: by working on example widgets.
Whenever a widgel is edited that has aiready been defined 1o
be of a particular style, Gilt pops up a dialog box asking if
the edit should change the style itself (Figure 8). The other
alternatives are to make the widget no longer belong 1o the
style, or o cancel the change and retum the widget to its

appearance before the edit was attempted.

In the future, we plan 10 add the ability to have widgets
use a paticular style with exceptions, but this is a complex
problem(4]. Some of the issues are whether to copy the
~ aunributes or retain the link to the original style, what 10 do

10 a style when the style it inherits from is changed, and
whether (0 save the inheritance links in the style files, or
write out all the style informaticn to each file.

WRITING AND READING STYLES

A set of styles can be written 10 a file using the buttons in
the style coatrol window (Figure 6). This file can then act
as a “Style Sheet.” Whenever a new dialog box is being
creaied, the style sheet file can first be read. Then, the
appropriate styles can be inferred or explicitly applied to
the widgets. This will help insure that the new dialog box
is consistent with previous dialog boxes created for this or
other applications.

When the work window is saved 10 a file, Gilt will optionally
include the style information in that file. In this case, the file
is self-contained. Alternatively, the file can simply coatain
a pointer to the appropriate style file. Then, whenever the
window is used by applications or read back inmo Gilt, the
style file will be re-read, so any subsequent edits to the styles
will be reflected. However, this can cause the window to
ook ugly (for example, if the style for a set of radio buttons
changes from horizontal to vertical, the buttons are likely to0
overlap other widgets). Therefore, a version number is kept
in tbe style file, so at least 2 warning can be issued when an
old window is opened with an edited style file.

EVALUATION

As 2 small, informal experiment (0 see how quickly users
could create interfaces, using grapical styles and tabs, four
subjects were given two tasks. Each task has two similar
dialog boxes. For the first box in each task (i.e.DBox1 and
DBox3), the properties for all widgets were set using the

Dialog Boxes for Taskl:
Dqul

ront succtiou.

sw . B] cemeif
-m t_:r.‘u-naf -l iR Lise

Foat: ttc.f File: [ereis

DBox2

Button Interactor:

Start-Eveat = o)
e
'_juc: ol Nibly. _SOSghS .
w PPLR. yplat o Lis Soggla-

P ————————————.

- A :“:] T

Dialog Boxes for Task2:
_DBox3
i’in Styl..
ruu.-q !ntt-m o] cewei}
Vw
[-y
~ Saxh-grey

— fl

]

Dackness

DBox4

Color Saelection:

Colox Palette j Zeaen
w et
v €oun
W Slue

Blus

]

R l

Figure 9: Dialog Boxes for Task] and Task2

122 UIsT92

Monterey, California

105 -

Second Gamet Compendium

property sheets. Their positions were determined using tabs.
Then, several styles were defined using these properties and
positions. For the second box in each task (i.e.DBox2 and
DBox4), the properties and positions for all widge's can be
inferved

awomatically, using the styles defined in the first

box (Table 1, Figure 9). The same four dialog boxes are
created without any styles by a Gilt expert. The results were
used to compare with above results (Table 2 and 3).

Table 1: Task Description

Taskl Task2

DBoxl DBox2 || DBox3 DBox4

Fromz Table 2 and 3, it is clear that the dialog box, where
all widgess are inferred, is creaied in less than half the time
for dialo boxes without styles: a 0.45 ratio for DBox2 and
a 0.42 ratio for DBox4. In guessing the styles for users
on DBox2 and DBox4, Gilt guessed correctly aimost all the
time. The over-heads for defining styles and tabs are smail:
a 1.73 ratio for DBox! and a 1.28 ratio for DBox3. Note,
however, that the longer time for DBox1 is mosty due to
the learning time since this was the first time using Gilt and
styles for almost all subjects. In addition, novices can leam
Gilt styles and labs quickly, because, in DBox1, they needed
a 1.73 ratio, but, in DBox3, they needed only 2 1.28 ratio.

The verbal protocols for these subjects indicated that they
felt that Gil. style guessing was useful and comfortable.
Two subjects said that the “Try Again”™ button is very good.
Subject A, who took this lest twice, using styles and without
any styles, felt that defining relative styles was very useful,
because the conventional layout mechanism did not support
“offset” among widgets, so he often had 0 calculate “left
+ width + offset” values for the referent widget, in order
to determine the left hand position for the new widget. He
indicated that graphical tabs were good for aligning some
widgets at particular fixed lines. However, ail subjects
claimed that they had to think about style names, whenever
defining any styles. They indicated that it was difficult
10 give good names for all styles. Also, they said that
sometimes they couldn’t remember whether this name had
aiready been used or not. Thus, we plan to prepare a default
style name in the style editing window.

STATUS AND FUTURE WORK

An earlier version of Gilt has been released to all Gamet
users. The version described here has been mostly imple-
mented, and is expected to be debugged and released in the
next few moaths.

In the future, we plan 10 investigate unifying tabs with the

Table 2: Task1 Resulis

(sec] DBoxl DBox2 DBoxl+2
Style: Subject A 420 160 580
Style: Subject B 1000 200 1200
Style: Subject C 910 300 1210
Style: Subject D 1060 270 1330
Style: Average 847 233 1080

No Style: Subject A 490 S10 1000
Ratio 1.73 045 1.08

Table 3: Task2 Results

[sec] DBox3 DBox4 DBox3+4
Style: Subject A 250 110 360
Style: Subject B 400 300 700
Style: Subject C 380 180 560
Style: Subject D 500 180 580
Style: A-erage 383 193 575
| No Style: SubjectA | 300 460 760
Ratio 1.28 0.42 076

relative styles. It seems like there should be 2 convenient
way to define “relative tabs™ that will achieve the desired
results. As discussed above, we would also like to investigate
exceptions 10 the styles. There might be a2 way to copy just
some values from one style into another, and ways to read
just a few styles from a file. Further work is needed on ways
for the system (o automatically generalize styles, so that, for
example, the font property or color defined on a radio button
will be applied to a circular gauge, even though they have
different types.

~

CONCLUSIONS

The Graphical Styles mechanism described in this paper
can help designers more quickly create user interfaces, be-
cause many of the properties and alignments can be applied
with a single specification, or even inferred automatically.
In addition, the styles can help insure consistency across
muitiple dialog boxes in an application, and even across
multiple applications, since Style Sheets can be developed
and re-used. The Graphical Tab mechanism seems 1o be
an easier-to-understand and easier-to-edit mechanismn than
other layout approaches. Finally, in addition to being useful
for user interface builders, such as Gilt and YUZU, we fee!
that the graphical styles and graphical tab mechanisms would
be useful for a wide range of graphical editors, including
drawing programs and CAD/CAM.

ACKNOWLEDGEMENTS

Andrew Mickish helped 10 implement the features described
in this article. Brad Vander Zanden and other members of

November 15-18, 1992

123

Graphicai Styles For Building Uls by Demonstration

Gamet project provided useful advice and help with the de-
sign and implemesntation. For help with this paper, we want
to thank Dave Kosbie, Richard McDaniel, Andy Mickish,
Francesmary Modugno, Bemita Myers, Brad Vander Zan-
den, Tomanari Kanba, Hiroshi Yamada, Kin-ichi Hisamatsu,
Kyoji Kawagoe, the YUZU development members and the
reviewers.

This research was partially sponsored by NEC Corporation,
and partially by the Avionics Lab, Wright Research and De-
Center, Aeronautical Systems Division(AFSC),
U.S. Air Force, Wnght-Patterson AFB, OH 45433-6543 un-
der Cenmract F33615-90-C-1465, Arpa Order No.7597. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Government.)

REFERENCES

{1} Luca Cardeili. Building User Interfaces by Direct ma-
aipulation, In Proceedings of UIST" 88, Alberta, Canada,
1988, pp.152-166.

{2] Gideon Avrshami, Kenneth PBrooks, and Marc
H.Brown. A Two-View Approach To Constructing User
Interfaces, In Proceedings of SIGGRAPH' 89, Boston,
1989! W-l37°]46.

{3] Scout E.Hudson and Shamim P.Mohamed. Interactive
Specification of Flexible Interface Displays, ACM Trans-
actions on Information Systems 8,3, 1990, pp.269-288.

{4] Jeff Johnson and Richard J.Beach. Styles in Document
Editing Systems, JEEE Computer 21,1, 1988, pp.32-43.

[5] Brad A Myers. Creating User Interfaces by Demonstra-
tion, Academic Press, 1988,

[6) Brad A.Myers, Brad Vander Zanden, and Roger
B.Danneaberg. Creating Graphical Interactive Appli-
cation Objects by Demonstration, In Proceedings of
UIST 89, Williamsburgh, 1989, pp.95-104.

(7} Brad A.Myers, Dario A.Giuse, Roger B.Dannenberg,
Brad Vander Zanden, David S.Kosbie, Edward Pervin,
Andrew Mickish, and Philippe Marchal. Garnex: Com-
prehensive Support for Graphical Highly-Interactive
User Interfaces, IEEE Compwer 23,11, 1990, pp.71-
85.

{8] Brad A.Myers. Separating Application Code from Toolk-
its: Eliminating the Spaghetti of Cali-Backs, In Proceed-
ings of UIST’ 91, Hilton Head, 1991, pp.211-220.

(9] Brad A.Myers and Mary Beth Rosson. Survey on User
Interface Programming, In Proceedings of CHI'92,
Monterey, 1992, pp.195-202,

{10] Brad A Myers. Text Formauing by Demoastration, In
Proceedings of CHI'90, New Orleans, 1991, pp.251-
256.

{11] Gurminder Singh, Chun Hong Kok, and Teng Ye
Ngan. Druid: A System for Demonstrational Rapid
User [uterface Development, In Proceedings of UIST 90,
Saowbird, 1990, pp.167-177.

[12] Takahiro Sugiyama et al. CANAE User Interface
Builder: YUZU (In Japanese), la Proceedings of the
45th Nasional Convention of Information Processing
Society of Japan, Tokushima, 1992, 5Q-3.

{13} Jobn M.Vlissides and Steven Tang. A Unidraw-Based
User Interface Builder, In Proceedings of UIST 91,
Hiltoan Head, 1991, 0.201-210.

(18] Bruce F.Webster. The NeXT Book, Addison-Wesiey
Publishing, 1989.

124 ulsT92

Monterey, Calitornia

Second Gamet Compendium

107 -
Reprinted from Proceedings SIGCHI'9!: Human Factors in Computing Systems.
New Oreans, LA. April 28-May 2. 1991, pp. 243-249.
GRAPHICAL TECHNIQUES IN A SPREADSHEET FOR
SPECIFYING USER INTERFACES
Brad A. Myers
School of Computer Science
Camegie Mellon University
Pittsburgh, PA 15213
ABSTRACT underlying programming Lnguage. However, it s sy

Many modern user inerface development environments
use constraints W connect graphical objects. Constraints
are relatioaships that are declared once and then maintained
by the system. Often, systems provide graphical, iconic, or
demonstratinnal techniques for specifying some con-
straints, but these are incapable of expressing all desired
relationships, and it is always necessary 10 allow the user
interface designer to0 write code o specify cmplex con-
straints. The spreadsheet interface described here, called
C32, provides the programmer with the full power of writ-
ing constraint code in the underlying programming lan-
guage, but ii is significantly easier 10 use. Unlike other
spreadsheets iools for graphics, C32 automaucally
generates appropriate object references from mouse clicks
in graphics windows and uses inferencing and demonstra-
tional techniques 10 make constructing and copying con-
straints easier. In addition, C32 also supports monitoring
and debugging interfaces by waiching values in the spread-
sheet while the uscr interface is running.

KEYWORDS: Constraints, Spreadsheets, User Interface
Development Tools.

INTRODUCTION

C32 is a wol that helps users comstruct constraints. A
“‘conswaint’ is a relationship among objects that is
declared once and maintained auwmatically by the system,
Typically, a constraint is expressed as an ¢xpression {or
“formula’™) that is stored in a slot of an object. The ex-
pression is re-evalualed whenever any other values change
that are referenced in the formula. Constraints are used o
control the graphical objects in many modem user interface
toolkits.

C32 uses a spreadsheet model and provides the program-
mer with the full power of writing constraint code in the

Parmission to copy without fee sit or part of this matensi is
granted provided that the copies are not made ar distnbuted tor
direct cormwnercisl edvantags. the ACM copynght notics and the
utie of the publication end its date appear. and notice is given
thet copying is hy permission of the Association for Computing
Machinery. To copy otherwise, ar to republish, requires a fes
and/or specific permession.

® 1391 ACM 0-89791-383-3/91/0004/0243...31.50

243

nificanily easier © use, and provides many of the ad-
vantages for graphics programmung that financial spread-
sheets provide for business.

C32 is different from previous spreadsheet systems for user
interface constnucuon because it uses a wide array of visual
and inferencing echniques so the user does not have 10
write the entire constraint by hand. In particular:

* C32 automatically generates appropriate references o
graphical abjects when the user clicks on the object in a
user interface window.

o [t uses demonsirational techniques to guess which
properties of objects should b. used,

» It guesses how o parameterize constraints when they are
copied from one place 1o another or generalized inwo
procedures, so absuact and reusable constraints can be
constructed by example.

o It incorporates graphical techniques to help trace and
debug constrainds.

* It is integrated with an existing prototype-instance sys-
tem in which constraints can be inherited.

[t is one of a suite of tools built on 1op of an exisung,
successful constraint system, rather than providing the
only interfacc 10 the constraints, so users can choose
other tools when they are more app Jpnate.

Many systems provide a graphical, direct manipulation
technique for specifying some constraints. Unforwunately,
such techniques are incapable of expressing every con-
straint the uscr may want. C32 provides a convement and
easy-to-use technique for constructing consgaints when the
graphical techniqucs are mappropnate. For example, C32
pops up when the user asks for a custom constraint n the
Lapidary intcracuve design ol [8]. C32 can also be used
stand-alone when a graphical front cnd is not available.
We have found C32 to be significantly easter 10 use than
construcung the constraints by typing in code.

C32 has been implemented as pant of the Gamet systcm
[10]. Itis an acronym, and stands for CMU’s Clever and
Compclling Contnbution to Compu(cr Science in
Commonl.isp which is Custommblc and Charactenzed by
a Complete Coverage of Code and’ Conuuns a Comucopia
of Crcauvc Consuucts because it Can Create Complex,
Con‘cct Consumms that are Consxmcwd Gearly and

- 108

Graphical Techniques in a Spreadsheet for Specifying User Interfaces

Concretely, and are Communicated using Columas of Cells
MmCamdyCakuthouwyClmge
Continuously and Cancel Confusion.

RELATED WORK

Spreadsheets have been used for financial calculations for a
long time, starting with VisiCak in about 1984, and most
sysiems have the sume form: an array of cells, with each
column labeled with a letter and each row with a number.
Some extensions 10 the spreadsheet idea include using it for
logic programming {12] and a technique for adding
procedural abstraction (1]

The NoPumpG and NoPumpll systems {15] use spread-
sheets to define graphical user interfaces, but they have a
sumber of impontant differences from C32. The maost im-
portant is that the NoPump systems provide many different
types of ceils, In C32, all the cells are the same type: slots
of objects. To program the user interface, NoPump
provided special cell types that reported low-level mouse
positions and clock ticks, whereas C32 uses Gamet’s high-
level Interactor abjects [9] o handle behaviors, and slots of
Interactors can be specified and viewed in C32 cells, just
like any other object. In NoPump, the cells are free float-
ing whereas C32 uses a tabular organization, like a conven-
tional spreadsheet. Thus, all the cells about a particular
object are always in one place in C32. There are additional
small differences. The cells in NoPump are typed and the
formulas use a special language. In C32 the cells can hald
any kind of value, and formulas are expressed in a standard
language (Common Lisp). Also, NoPump provides few
facilities for object referencing, and none for formula
generalization.

Constraints have been used by many systems, starting with
Skeschpad [13] and Thinglab [3]. Uses of coastraints
within user inerface toolkits include GROW [2], Peridot
[7), Apogee {5}, and CONSTRAINT [14].

Graphical interfaces 10 conswraints include the ‘‘wiring
diagrams™* in Thinglab [4], the iconic interfaces in Juno
and Lapidary (8], and the reference lines in Apogee [6].
The Peridot system automatically infers constraints from
example drawings {7). The wiring diagrams are hard 10 usc
for complicated constraints, and the other techniques can-
not even handle complex constraints. The spreadshect in-
terface described here could be used as a supplement W0
these other techniques when they cannot generate the
desired relationship.

COHSTRAINT EXPRESSIONS

Objects in Garnet have instance variables or fields, cailed
siots. The content of each slot is either a normal value,
such as a number or string, or a formula that computes the
value. References 1o other objects in formulas use a special
form: (gv other~-object slot-name), where gv
stands for *‘get value.”’

Because cach slot can contain at most one formula, only
one-directional constraints are supported. We are explor-
ing multi-way coastraints for the future, in which case C32
will be changed appropriately.

Through exiensive experience with the many projects that
have hand-coded Gamet coastraints, we have discovered
that people have trouble gencrating correct constraints, Al-
though most constraints in interfaces are very simple, there
are a reasonable number of five t0 &n line code fragments
used as constraints. Even the simple constraints can be
tricky 10 enter, since the user must reference the ap-
propriate objects and slots. Also, given a set of constrzints
that are not working correcily, users have difficuity finding
the bugs. C32 was designed to address these problems.

OVERVIEW

C32 can display and allow the user to edit any kind of
object and constraint, no matter how they were created: by
hand-coding, by using Lapidary (a Gamet interactive
design tool), or by using C32.

Figure 1 shows a typical instance of C32. Each column
conlains a separate object Rows are labeled with the
names of the slots, such as :left, :top, :width,
:height, :visible,c.! Since different objects can
have different slots, the slot names are repeaied in each
column. For example, lines have slots for the endpoints
(:x1, :yl, :x2, :y2)butrectangles do not. Also,
each object’s display can be scrolled separately, so each
has its own scroll bar. This makes the spreadsheet look
somewhat like a multi-pane browser as in Smalltaik.

The spreadsheet cells show the current values of the slots.
If a value changes, then the display will be immediately
updated. 1t is important to emphasize that the user interface
being constructed will operate normalily (albeit a litde
slower) even while the spreadsheet is displaying objects in
that user interface. The undeslying constraint mechanism is
used intemnaily by the spreadsheet 1o maintain this connec-
ton. Monitoring the values as they change can help the
programmer dcbug objects, and makes the constraints
much more ‘‘visible'* and understandable. If the user edits
the value in the spreadsheet cell, the object’s slot will be

updated.

The @ icon by some slots in Figure 1 means that the slot
value is computed from a formula. Pressing the mouse on
the icon causes the constraint expression to appeas in a
different window (sce Figure 2). The expression itsclf can
be edited by typing or other techniques (discussed later).
Note that uniike cells in conventional financial spread-
sheets, C32 allows a slot to have a value different from
what the formuta would calculate. Therefore, the user can
edit the value of slots with formulas without affecting
whether there is a formula there or not. This can be useful
when trying to find the correct value for a slot while debug-
ging. To remove a formula, the user simply deletes the
entire string in the formula display window.

One novel feature of the underlying object system is that
new slots can be added to objects at any time. Using C32,
the user can create a new slot by simply typing a slot name
and value into a blank row.

1Al siot names start with a colon.

109 -

Second Garnet Compendium

MY-RECTANGL E STRING1 ARROV

:Laft 10 L Strang g3 ALK

; 10 Bl rne —— lenomanzr 3 S

¥idth <0 ; 25

Hsight. SO Top. Q 128

Visible QT ideh 2l '

| Line-Stvle Height 14 ~

filling-3tyle Yizible T _] Wi

L2rag-mction Lcapy - Ling - . Halioht

 Vindaw ¥ Fild- ML Pl P viadld
g;zm A GhAgual-feight NI P! - Lang-9|

iIazA rzmmmsm copy Qi &l
8 Windov _ ¥ . Drav-4

£32

®

Figure 1: (2} C32 viewing three objects (b). The scroll bars can be used t0 see more slots or columns, Changing the
window's size will change the number of slots and objects displayed (the number of rows and columns). Field
values are clipped if they are too long, but can be scrolled using editing commands. The @ icon means that the
slot value is computed with a formula. All inherited slots are shown in italics and marked with the @ icon.
(Inheritance is discussed in 2 later section.) When a formula is inherited the value is shown in a regular font since
it is usually different from the prototype’s. The inherited icon is also shown next (0 the formuta icon rather than

next (o the valve.

[Poraula for sTRINGL. :Left

)

(+ (CY WY-RECIANGLE :L2FT)
(FLOGR (- (OV NY-RECIANGLE :WIDTH)
'm(cv -STLY :VIDTH))

4] B

Figure 2: A formula window showing the constraint in the
:left siot of the STRING1 object of Figure 1,
which centers the string in the rectangle.

To view an object in the spreadsheet, the user can simply
type the object’s name into the title of a column. Alter-
natively, the user can select a column, and then point o an
object in a graphics window.

As with financial spreadsheets such as Microsoft Excel, we
provide a menu of the common functions used in
formulas.2 Another menu conuins the graphical com-
mands provided by Gamet, including functions to center
objects with respect to other objects and (o make their size

There we 30 many functions in Common Litp that only the mos
commonly used are provided in the menu.

245

be proportional. The user can easily add commands to this
menu, cither written in a conventional way oc created from
formulas. When functions are insented from the menus,
C32 puts the parentheses in the correct places and leaves
the cursor where the arguments to the function go. In this
way, C32 can be used like a syntax-direcied editor, which
has the foilowing advantages:

o the user does not have to deal with the syntax of the
language so there will be fewer syntax errors,

o the system will handle the parenthesis matching, which
otherwise can be annoying in Lisp, and

o this makes the system accessible {or people who do not
know Lisp.

GENERATING OB8JECT REFERENCES

One of the most interesting aspects of C32 is the way that
object references can be specified. As in a financial
spreadsheet, the user can point to a slot and have a refer-
ence t0 that slot inseried into the formula at the current
point Figure 3 shows how this can be used.

In Gamnet, there are different ways to reference an object in
a formula. Unlike other systems such as Peridot and con-
ventional spreadshects, Garnet ailows indirect relercaces 10
objects, where the object 10 be referenced is stored in a slot
of the object that contains the formula. Ome place this is

- 110

Graphical Techniquesin a Spﬁ@dsheetﬂfor Specifying User Interfaces

used is in composite objects. For example, if a graphical
aggregale is composed of a shadow, an outline rectangle,
and a label, as shown in Figure 4, then a reference 10 the
left of the shadow from the label would not name the
shadow directly. Instead, the reference would be:
{gv-indirect :parent :shadow :left)

These indirect references make it much more efficient o
create copies and instances of aggregates, since it is not
necessary to search through all the formulas and change the
references to refer 10 the new objects. When the formula
and the slot being referenced are part of the same aggregale
structure, then an indirect reference like the one described
above must be generated. If the objects are lotally distinct,
then a direct reference can be used. C32 searches the ab-
ject hierarchy 10 decide which is appropriate.

-USE OF INFERENCING

It is sometimes not convenient w read an object into a
spreadsheet column just to generate a reference o it
Therefore, a command will cause the system w0 go ino a
mode where a graphical object in any Garnet window can
be selected and 2 reference o it placed into the cument
formula. However, sclecting a graphical object does not
specify which siot of the object should be referenced. In
one mode, the yser must type this directly or select a slot
_from a menu. However, there are two inferencing modes
that try to guess the slot from the user’s actions, One uses
the current relationship of the two graphical objects ©0
guess the desired comstraint, much like Peridot (7). For
example, if the siot being edited is : Le£t and the object
seems 0 be centered horizontally with respect to the
selected object, then C32 generates a centering constraint.

The other mode ignores the current positions of the objects,
but looks at the siot being filled and where the mouse is
pressed in the selected object. For example, if the slot is
:left, and the mouse is pressed at the right of an object,
then the reference will be to the right of the object For the
:width slot, however, the same press wouid generate a
reference 10 the width of the object. Unlike Peridot, C32
does not try to confirm any of the inferences, but rather
simply iaserts the text into the formula. If the guess is
incorrect, it is ecasy for the user to delete the text and type
the correction.

Once a compiex formula is created, it will often be needed
in a slightly different form for a different slot or a different
obiect. As an example, suppose the user has constructed a
constraint that centers an object horizontally with respect to
two other objects (see Figure 5). Now, suppose the
programmer wants 10 center the object vertically also. The
formula could be copied to the : top slot, but all the slots
references need w0 be changed (:left W :top and
:width 0 :height). Therefore, when a formula is
copied, C32 tries 0 guess whether some slot names should
be changed. This uses a few straightforward rules based on
the slot names of the source and destination slots. IFf it

246

o |

Toramls for FIADM]. Twp ol

(¢ {gv V- JECTANRE Twy)
rLoea (-

W ~RET LANEA, & STRDWL
Sall
T=a

oo

1s8.

4
Pormuin foc SIRONL. Twp amcel

(o (gv MI-MECTANAE :Top)
(e (- (gv wr-ECTNIRT Teph

Figure3: The spreadsheet before and after the user has
selected the :top cell of MY-RECTANGLE 10
be inserted into the formula.

:parent

Push Me

Figure 4: A graphical button and its aggregate hierarchy.
References from one object 10 another use paths
through the hierarchy. Objects that are part of
the buiton have programmer-assigned names,
like :shadow and :outline, and refercnces
1o the button from its panis uses the standard
:parent siot. In a slot of the shadow, a refer-
ence to the :width of the text label would be
(gv-indirect iparent :label
swidth).

111.-

Second Gamet Compendium

B - [] B - . B []
@
(formula ' {floor (+ (gv rl :left) ;floor dous i divide
{gv £l :width)
{gv 2 :left)
; got thiz abject’ s widih.
(- {gv-indirect :width})}
2))
®)

Figure 5: (a) Recuangle R3 is centered horizontally between R1 and R2 using the formula shown in (b) so R3 moves

automatically when R1 and/or R2 moves.

appemss that slot names should be changed, the user is
queried with a dialog box, and if the answer is OK, then the
formula is modified automatically.?

AUTOMATIC GENERALIZATION

Another possibility is that the references in the formula
should be generalized into variables. C32 therefore
provides a command that will change the entire formula
into a function that takes the objects and/or slots as
parameters. This process is controlled by a dialog box. As
an example, generalizing the formula of Figure S creates
the dialog box of Figure 6-a, and the code would be
changed as shown in Figure 6-b. The new
Center-Betwaen-X function can now be used in other
formulas. It will also be added to the C32 graphics func-
tions menu, so it can be easily retrieved later.

The intelligent copying and generalizing discussed here
helps the user generate correct constraints by example.
Without these aids, it is quite common 0 forget W change
one or more of the references when formulas are copiced.
Generalizing also helps the programmer decrease the size
of the code by promoting the reuse of existing formulas,
Future research will investigate further ways w use
generalization.

TRACING AND DEBUGGING

Experience with Gamet and all other constraint-based sys-
tems shows that people have a difficult ume debugging
their formulas. The primary problem is that constraints are
not local because values in one object can affect values in
many different objects. Therefore, C32 provides a set of
tracing and debugging tools.

The most straightforward method is ® simply use the

’ﬁm&bamﬂhlm‘emmmemdtm&mh
the previous section, it scems prudent 10 require confirmation.

247

Gensralizing R3's :laft formula

New Fasction Nama: [Center~ Between-X|
Canaxelize Sbu

Aot colerteito s, wiod }

St reteaedt <o o Kinid |
Yhose!

Objects X

1! refacred to u:
2 1ederred t as: (bR

(a)

{defun Center-Between-X {objl ob32)
(floor (+ (gv ob3l :left)
(gv objl :width)
{gv obj2 :left)
(- (gv=-indirect

2))

twidth)))

(formuias ' {Center-Between-X rl r2})

(®)

Figure 6: (a) The dialog box for generalizing from a for-
mula. Al the values shown arc the defauits
provided by C32. After the user hils OK, the
formula of Figure 5-b is converted automaucally
into the function shown here in (b).

spreadsheet to exercise and moritor the user interface in
action. Often, secing the current values of all the slots is
sufficient to detcrmine the problem. To help relate the ceils
and objects, commands arc provided w blink the object
associated with a cell, or the cells for an object.

Other commands display arrows in the spreadsheet to show
which cells are uscd in the computation of the current cell
(see Figure 7-a) or the cells that use the vajue of this cell
(Figure 7-b). We are exploring additional raphical con-
straint debugging tools.

Graphical Techniques in a Spreadsheet for Specifying User Interfaces

Figure 7:

C32 will display arrows 10 show which slots the current one depends on or which slots depend on the current cell.

(a) shows (hat the :left of STRING1 depends on the :1eft of the rectangle, and the :widths of the
rectangle and itself (since it is centered). (b) shows that the : le £t of the rectangle is used by the : left of the
string and : x1 of the line. In both views, the arrows point to the slot being used.

INHERITANCE

Garmnet uses a prototype-instance model instead of the con-
ventional class-instance model. This means that any object
<an be used as a prototype for a new set of objects; there is
no distinction between classes and instances. One resuit of
this is that each instance decides which slots 10 inherit and
which to override. For example, many graphical objects do
not have a : filling~style slot, but rather inherit this
value. Inherited slots are shown in italics with the @ icon
next to their value (see Figure 1).

Inheritance in Gamet is determined dynamically. This
means that setting the value of a slot which used o be
inherited, changes the slot 0 be local with the new value.
C32 shows this by removing the inherited icon after a slot
is edited. When a local slot is deleted from an object in
Garnet, the system looks in the prototype o see if that same
slot exists there, and if so, the slot becomes inherited.
Therefore, if a slot is deleted in C32 but there is a value
that can be inherited, C32 will change the display W show
the inherited value. This makes it clear to the user that
aithough the local siot is removed from the instance, there
is still a legal value for it.

Fonnulas can also be inherited. In this casc, there is often a
different current value for the slot, even though the formula
is the same as the protwtype’s. For example, the :width
siot of a text object usually contains a formula that com-
putes the width based-on the object’s font and string value.
Most text objects inherit this formula, but sull have a dif-

248

ferent curvent value because their sgring and font values are
different. Therefore, if a2 formula is inherited, the inherited
marker is shown niext to the formula icon in the spreadsheet
and the value part is act shown in italics.

INTEGRATION WITH OTHER TOOLS

There are many different mechanisms and tools in the Gar-
net system. Therefore, unlike previous spreadsheet systems
such as NoPump, C32 does not have 10 address every
aspect of user interface design.

When the programmer wants graphics in Gamet to respond
10 the mouse or keyboard, an Interactor object [9, i1] is
attached to the graphics 10 handle the input events. There
is a standard protocol that the Interactors use to query and
modify the graphics. Since Interactors are objects, they can
also be read into C32. Unlike graphical objects, however,
Interactors are not visible so they cannot be pointed at.
Therefore, there are commands to display a menu of all the
interaciors, of ait those that affect a partucular graphic ob-
ject, or ail those that respond 1o a panicular input event,

C32 can also be used with the Lapidary inicractive user
inerface design wol {8]. Lapidary allows the designer 10
draw pictures of what the user imerface shoukd ook hike
and then demonstrate how it should act. Although
Lapidary provides an iconic interface o many common
constraints, C32 can be used when more complex or cus-
1OM constraints are necessary.

113-

Second Gamet Compendium

STATUS AND FUTURE WORK

The spreadsheet described here is mostly working, and we

expect w0 release it 0 Gamnes users within the next few

months. Their feedback will be valuable in deciding what
features to add and modify. We expect to explore:

o Other ways 10 use demonstration to create formulas.

« More ciever generalizations from existing formulas.

¢ Better comnection with Interactors. There is a2 well-
defined protocol between Interactors and graphic objects

. that serve as feedback objects. The spreadsheet could set
the appropriate fields of the graphic object automatically
if the object was placed in a slot of the Interactor, as is
done by Lapidary [8].

* Ways © use C32 to create objects from scraich, so C32
can be used as an interface builder. Once objects have
been created in memory, Gamet already contains a built-
in mechanism that will write them to a file so they can be
used by real applications.

CONCLUSION

The C32 spreadsheet contains 3 number of novel feamres,
including the use of demonstrational techniques to gencrale
object references, automatic generalization of formulas,
and graphical tracing and debugging. These make it easier
10 use than previous spreadsheet-based graphical tools.
C32 enhances the Gamet user interface developmerit en-
vironment by providing an appropriste mechanism for
specifying complex, custom constraints, which occur fre-
quently in user interface software. C32 has demonstrated
that a spreadsheet tool can be a valuable addition t0 an
existing constraint-based system, and that it is possible ©
get totally carried away in acronym building.

ACKNOWLEDGEMENTS

Brad Vander Zanden contributed o the design of C32. An
carlier version of C32 (then called C29) was implemented
by Andrew Mickish. The Gamet system as a whole has
been developed by a large number of people. For help with
this paper, [want to thank Brad Vander Zanden, Bemita
Myers and the referees.

This research was sponsored by the Avionics Lab, Wright
Research and Development Center, Acronautical Systems
Division (AFSC), U. S. Air Force, Wrighi-Patierson AFB,
OH 45433-6543 under Contract F33615-90-C-1465, Arma
Order No. 7597. The views and conclusions contained in
this document are those of the authors and should not be
interpreied as representing the official policies, either ex-
pressed or implied, of the U.S. Govemment.

Additional support for Gamet was supplied by Siemens,
Apple Computer, Inc. and General Electric.

REFERENCES

1. Allen L. Ambier. Forms: Expanding the Visualnes of
Sheet Languages. 1987 Workshop on Visual Languages,
Visual Language’87, Linkoping, Sweden, Aug., 1987, pp.
105-117.

249

2. Paul Barth. "An Object-Oriented Approach to Graphi-
cal Interfaces”. ACM Transactions on Graphics 5, 2 (April
1986), 142-172.

3. Alan Boming. Thinglab—A Constraint-Oricnted
Simulation Laboratory. Tech. Rept. SSL-79-3, Xerox Palo
Alio Research Center, July, 1979.

4. Alan Boming. Dcfining Constraints Graphically.
Human Factoes in Computing Systems, Proceedings
SIGCHI'86, Baston, MA, April, 1986, pp. 137-143.

5. Tyson R, Henry and Scout E. Hudson. Using Active
Data in a UIMS. Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software, Ban{f, Albena,
Canada, Oct., 1988, pp. 167-178.

6. Scout E. Hudson. Graphical Specification of Flexible
User Intexface Displays. Proceedings of the ACM SIG-
GRAPH Symposiumn on User Interface Software and Tech-
nology, Williamsburg, VA, Nov., 1989, pp. 105-114.

7. Brad A. Myers. Creating User Interfaces by
Demonstration. Academic Press, Boston, 1988.

8. Brad A. Myers, Brad Vander Zanden, and Roger

B. Dannenberg. Creating Graphical Interactive Application
Objects by Demonstration. Proceediags of the ACM SIG-
GRAPH Symposium on User Inwetface Software and Tech-
nology, Williamsburg, VA, Nov., 1989, pp. 95-104.

9. Brad A. Myers. Encapsulating Interactive Behaviors.
Human Factors in Computing Systems, Proceedings
SIGCHI'89, Austin, TX, April, 1989, pp. 319-324,

10. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Ed Pervin, Andrew
Mickish, and Philippe Marchal. "Comprehensive Support
for Graphical, Highly-Intcractive User Inicrfaces: The Gar-
net User Interface Development Eavironment”. /[EEE
Computer 23, L1 (Nov. 1990), 71-8S.

11. Brad A. Myers. “A New Model for Handling toput”.
ACM Transactions on Information Systems 8 (1990), To

appear.

12. Michact Spenke and Christian Beiiken. A Spreadsheet
Interface for Logic Programming. Human Factors in Com-
puting Systems, Proccedings SIGCHI'89, Ausun, TX,
April, 1989, pp. 75-80.

13. lvan E. Suthcrland. SketchPad: A Man-Machine
Graphical Communication System. AFIPS Spring Joint
Computer Conference, 1963, pp. 329-346.

14. Brad T. Vander Zanden. Constraint Grammars--A
New Model for Specifying Graphical Applications.
Human Factors in Computing Systems, Proceedings
SIGCHI'89, Ausun, TX, Apnil, 1989, pp. 325-330.

15. Nicholas Wilde and Clayton Lewis. Spreadsheet-
based Imeractive Graphics: from Prototype o0 Tool.
Human Fxctors in Computing Systems, Proceedings
SIGCHI'90, Scaule, WA, April, 1990, pp. 153-159.

To appear in Proceedings INTERCHI'93: Human Factors in Computing Sysiems.
Amsterdam, Holland, April 24-29, 1993.

Marquise: Creating Complete User Interfaces
by Demonstration

Brad A. Myers

Richard G. McDaniel

David S. Kosbie

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Piusburgh, PA 15213
{bam, richm, koz}@cs.cmu.edu

ABSTRACT

Marquise is a new interactive tool that allows virtually all
of the user interfaces of graphical editors 10 be created by
demonstration without programming. A ‘‘graphical
editor’’ allows the user to create and manipulate graphical
objects with a mouse. This is a very large class of
programs and includes drawing programs like MacDraw,
graph layout editors like MacProject, visual language
editors, and many CAD/CAM programs. The primary in-
novation in Marquise is to allow the designer 0
demonstrate the overall behavior of the interface. To im-
plement this, the Marquise framework contains knowledge

about palettes for creating and specifying properties of ob-

jects, and about operations such as selecting, moving, and
deleting objects. The interactive 100l uses the framework
10 allow the designer to demonstrate most of the end user’s
actions without programming, which means that Marquise
can be used by non-programmers.

KEYWORDS: User Interface Software, User Interface
Management Systems, Interface Builders, Demonstrational
Interfaces, Gamnet.

INTRODUCTION

One important goal of the Gamel project (6} is to allow
user interface designers who are not programmers (o design
and implement the look and feel of user interfaces. The
Marquise tool is the newest addition to the Garnet environ-
ment, and it ties together all the previous tools, while sup-
porting, for the first time, interactive specification of lhe
entire user interface.

In particular, Marquise allows the overall graphicat ap-
pearance of the interface to be drawn, and the behaviors for
object creation, selection and manipulation 0 be
demonstrated.

Unlike many previous tools which concentrate on widgets,
Marquise is aimed mostly at the main drawing window of
graphical editors where the uscr creates and manipulates
graphical objects with a mouse. For cxample, with Mar-
qQuise you can demonstate how the rubber banding will

appear as you movc the mouse, rather than having this as a
hard-wired, unchangeabic component. Another important
capability in Marquise is demonstrating the modes of the
interface. Although ‘‘modc-free’” interfaces are often
touted, all modem graphical interfaces are in fact highly
moded. For example, in most drawing toois such as
Macintosh MacDraw, a palette controls whether the next
mouse click will select an objcct, insert a text string, or
draw a rectangle, circle, polygon, eic. Other modes inciude
the current colors, line stylcs, and arrowhead styles for the
objects that will be created. Marquise provides an inwiuve,
demonstrational method for specilying the modes that con-
trol and are affecied by an operation.

With Marquise, we have concentrated on providing com-
plete control of when and how the behaviors are initiated.
The primary innovations in Marquise are: (1) the use of
special icons to reprcsent the mouse positions while
demonstrating the behavior, so the designer can then
demonstrate what happens at those locauons, (2) sophis-
ticated control over the locations where those events should
lake place to begin and end behaviors, (3) a “'mode win-
dow’” to make explicit the modes of the imerface that con-

u~ the behaviors and values, #) the formalizauon of

“‘palettes’ to conurol modes and object properuces, and (5)
the ability to imeracuvely specily the attributes for buskt-in
layout operations and objects.

Marquise stands {or Mosuy Automated, Remarkably chk
User Interface Software Environment. (A **marquise’ is a
gem havmg, the shape of a short, pointed oval with many
facets.) Marquise is part of the Gamect system, which s a
comprchensive user interluce development environment
written in Lisp for the X window system !

RELATED WORK
Previous design tools have shown that it ts possible to in-

he Gamet sysiem s available by anonvmous 111 Although Mar.
quise 13 not yet ready for distnbution as ths paper 1s being waten, you
can get the tovtkat, the Gilt interface bailder, and Lapndary Send mail 1o
Garnet@cs. cmu. edu for infemmanon,

J————

uise: Creating Complete User Interfaces by Demonstration

- 116

teractively specify the graphical appearance and behavior
of limited parts of an application’s user interface. For ex-
ample, many interface builders, such as the NeXT Interface
Builder, UIMX for Motif, Druid {8}, and Gilt (7], allow the
designer 1o interactively specify the placement of widgets.
Peridot [3] allows new widgets 10 be created interactively
without programming, and Lapidary [4] allows application-
specific graphical objects to be demonstated. Marquise
goes beyond these tools since it supports creating, editing,
and deleting of objects at run time, and allows the overall
behavior t0 be defined. DEMO [10] used the idea of
demonstrating the end-user’s actions that start a behavior
(called the ‘‘stimulus’’) and then demonstrating the
response to that stimulus. DEMO II1{1] added sophis-
ticated techniques for inferring constraints to conuol how
objects are placed or moved. Marquise uses the stimulus-
response idea, here called ‘‘train’’ and “*show,’”” but con-
centrates on which high-level actions are appropniate and
the context of the stimulus.

Some previous systems have provided frameworks to heip
code graphical editors. Unidraw [9] and many graph
editors (e.g., [2]) provide a standard set of buiit-in opera-
tons as methods, and the designer writes code 10 overnide
these methods for the specific application. However, none
of these other systems allow new behaviors to be defined
by demonstration.

USER INTERFACE

The basic windows for Marquise are shown in Figure 1.
There is a palette of objects that can be drawn, some
palettes for contolling the properties of those objects, and
a set of commands in a menubar. In ail conventional inter-
face builders there are two modes: Build and Run, where in
Build mode the designer constructs the interface, and in
Run mode it is tested. Marquise adds two additional modes
to demonstrate behaviors: Train and Show. Train mode is
used 10 demonstrate what the end user will do, and Show
mode is used to demonstrate the system’s response to that
action. A different mouse cursor for each mode insures
that the designer always knows what the current mode is.

In Build mode, the static parts of the nterface are drawn.
For example, the designer might add 0 the window somc
widgets that should always be visible. Lines could be
added as decorations. Many applications contain paletics
that show which objects can be created, or that show
various values for a property (like color, ling-style, etc.).
These palettes are drawn with Marquise in Build mode. [n
Run mode, the interface can be exercised to see how it will
operate for the end user.

In Train mode, the designer operates the mousc and
keyboard in the same way the end user would, and then
goes into Show mode to demonstrate what the system's
response should be. While in Train mode, the cnd-uscr
behaviors are operational, but 1n addition, the kcystrokes
and mouse movements are saved. In Show mode, the
designer can create and cdit objects exactly the same as in
Build mode, except that the operations are remembered so
they can be attached to the events demonstrated in Train

“‘" b tut Arranoge Constaimie UBehaviors

Figure 1:

The main Marquise windows: the basic object palette on
the left, the main work area, and the palette for controll-
ing the color and halftones for filling-styies and line-
styles at the bottom. The designer is creating an inter-
face with a “‘create palette’” at the top containing two
types of nodes and two types of links. The node at the
lower right of the work window is selected. The Mar-
quise commands are in thc menubar at the top. The
‘*Consrraints’’ menu allows graphical constraints to be
specified. The *‘Behaviors”” menu allows objects to be
declared as poleues, and displays the mode and feed-
back window:

Ry B3 ke Rt Ry R
(@)

(b) ©)

Figure 2:

(a) The icons that show where the mouse was pressed,
moved to, released, clicked (pressed and released in the
same place), doubie-clicked, and double clicked and
releused. (b) In Train mode, the designer pressed the
mouse down and moved, and then i Show mode, drew
a dotted line as the intenm feedback. (¢} Going back o0
Train mode, the designer relcased the mouse button, and
in Show mode, deleted the doued line and drew a solid
line.

mode.

As an cxample, here s how the designer would
dcmonstrate that when the mousc button goes down, a
fcedback dotted line should be drawn which follows the
mousc, and then when the button 15 relcased, the dotted hine
should be crascd and a rcal linc drawn. First, the designer
would go into Train modc, press down the mouse bution,
and move away from (he imial press. Without releasing
thc mousc bution, the designer would change o Show

117 -

Second Gamet Compendium

Behavior Wmes: | Creating-A-Line
ojecks:

[ﬂu obiject louMd an.l 13 an instance of LINE-~2212 with
properties:

Slot :line~Style Ls
Placement s tadl = Nouss Dowm foint

1242 = dNouse Move Peist [Lait Placemenc]

The object |u,n-| is an instance of LIME-I212 with properties:

As the mouse i3 moved over the

snom ovrect

When the bButton is lifted over the m

wsece (]

‘| Cruate

Figure 3:

The feedback window for behaviors. At the top is a
pull-down menu of commands, then the name of the
behavior, then the objects that participate in the be-
havior, and finally the events and actions. Pushing on
the buttons displays a popup window of the other pos-
sible choices. Changing the option at the beginning of a
**sentence’” will change the options available for the
rest of the sentence. An entire section of the window
can be selected and cut, copied, eic.

mode. The window will now contain two icons which
show where the mouse was pressed and to where it was
moved. Now in Show mode, the designer draws a dotted
line between the icons (Figure 2-b). Marquisc infers that a
dotted line should be created on the down press and one
end shouid follow the mouse as it moves. Then the desig-
ner presses the mouse button somewhere on the back-
ground and switches to Train mode with the mouse button
still down, so the mouse release can be demonstrated. Be-
cause this second demonstration does not include a down-
press, the original down-press icon is retained. Next, in
Show mode, the designer dcletes the dotted tine and draws
a solid line from the initial down press icon to the final
button release icon (Figure 2-c). This entirc behavior takes
less than 30 seconds to demonstrate, and very few new
concepts or commands are necessary, since the designer
already knows how to draw and delcte objects in the editor.

If the mouse had been pressed and released in the same
place, thea a click icon would be displayed instead of the
down, move and up icons. Double-clicking or double-
clicking followed by a move arc also supported. To allow
modes to be changed while mouse buttons are being held
down and while the mouse is al a particular place, keyboard
accelerator keys are used to change modes.

Marquise generalizes from the designer’s example actions
10 create the user inierface. Any system that tries 0
generalize will sometimes guess wrong. Various
mechanisms have been explored in other systems to show
the user what has been guessed, so that users can verify and
correct the inferences. Older systems, such as Peridot
{3] and Druid [8], required the user o confirm each in-
ference, which can be disrupting and annoying. In Mar-
quise, a feedback window (Figure 3) shows the inferred
operation. The labels and buttons can be read as a sen-
tence, and the bultons can be pressed to pop up a list of
other aliemnatives and change the values. Since Marquise
appears to guess correctly most of the ume, Marquise ap-
plies the interred property immediately, and allows the
designer to verify or change it afterwards in the feedback
window.

ENVIRONMENT

Marquise makes heavy use of many features of Gamet.
Garnet uses a retained object mode! and a prototype-
instance object sysiem. This means that there is an object
in memory for every object on the screen, and that any
object can be used as the prototype to make a copy or
instance. Since alli Garnet objects are represented the same
way, there is a single mechanism for copying and creating
objects, whether they are simple rectangles or aggregates
containing many components. Therefore, Marquise can al-
ways generate appropriate code to create items for run
time, without having to know the types of the objects the
designer has drawn.

Implementing the bechaviors that are demonstrated is quite
straightforward once they have been determined because
Marquise can crcate instances of ‘‘interactor’’ objects
{5) and fill in the appropriatc attributes. Each interactor
implcments a particular kind of behavior, such as selection,
crcauon, moving, ctc., and conuins attributes 1o support
most of the popular interaction styles.

The object system supports constraints, which are refation-
ships that are declared once and marmtained by the sysiem.
Constraints arc uscd o mainuzun the relationships among
the graphical objects in Marquisc. Constraints can also be
used to connect appiication data to Marquisc-generated in-
terfaces, or elsc application-specific cali-back procedures
can be invoked when a behavior 1s complcted.

Gamet contains a number of other high-level interactive
tools, such as the Lapidary ool for crcaung individual
widgets or objects, the Gilt tool for cdiung dialog boxes,
the Jade tool Tor automatically crcating dialog boxes, and
the C32 spreadsheet system for specifying compiex con-
straints. Because all the wols use the same data strucures

Mamquise: Creating Complete User Interfaces by Demonstration

-118

and file format for describing objects, Marquise does not
have to re-implement the functionality already provided by
those tools——it can concentrate on the global behavior. The
designer can have more than one tool operating at the same
time, and use whichever is appropriate for the current part
of the task.

FRAMEWORK

Marquise is able to construct the interface from the
demonstrations because it has built-in knowledge of the
kinds of operations that are common in graphical editors.
This knowledge is part of the underlying Marquise
framework that supports the interactive front end. The
operations include: creating an object of the type in a
palette, selecting objects, directly manipulating the size and
shape with the mouse, specifying properties of objects
(color, font, etc.) with a palette or property sheet, miscel-
laneous editing operations (deleting, duplicating, etc.), and
application-specific commands.

Modes

It is very common in user interfaces for different behaviors
to result from the same action, determined either by the
location of the initiating event or by the value of a global
mode variable. As an example of the first case, in
MacProject I for the Macintosh, pressing the mouse button
down will start text editing (if inside a box), select a box (if
at its edge), create a new box (if in the background), draw a
link between two boxes (if pressed in one box and released
in another), grow a box (if pressed on a selection handle),
or draw a link and create a box (if pressed in one box and
released outside). Designers specify these differences in
Marquise by demonstrating the different operations. Mar-
quise notices what objects are undemeath the demonstrated
cvents (including the mouse release), so it can distinguish
the correct times to use the different behaviors. The object
being used is shown in the feedback window, and the but-
tons there can be used to edit the choice,

In other cases, the selection of the behavior is determined
by the value of a global mode variable, which is set by a
palette or an externai application program. To make these
modes explicit and visible, Marquisec provides a mode
window, shown in Figure 4, which lists each mode variablc
and its current value. The values displayed will changc as
the interface is operated, and the designer can directly edit
the values for user modes. When the value has a fixed list
of choices, these are available in a pull-down menu. To
make an interaction dependent on whether a modc has the
current value, it is only necessary 1o click on the check box
next to the mode name before demonstrating the behavior.
When a user action causes a mode to change, this can be
demonstrated by simply editing the value in the mode win-
dow while in Show mode.

The combination of the icons and mode window make the
control of the behaviors explicit and direct. In contrast,
DEMO II 1] uses multipic examplcs 10 determinc in which
situations the operations should occur, which we feel will
be more prone 1o errors.

Palettes

One of the important innovations in the Marquise
framework is the formalizauon of a paleute, which is a list
of options, usually presented graphically. Each palette con-
rois a single value or modc. Since paletes are conven-
tional interaction lechnigues intcrally (e, they are
usually a list of buttons), their internal behavior (how the
user changes the cumrent selcction and what feedback
shows the selected objects) can be easily specified using
Lapidary or Marquise. The innovation here is the
automatic connection of the paletie to the rest of the inter-
face.

Marquise identifies two main classes of palettes: creare
palettes and property palettes. A create palette contains the
different kinds of objects that can be created. For example,
the create palette for MacDraw Il contains a selection ar-
row, strings, lines, rectangles, rounded-rectangies, ovals,
arcs, curves, polygons, and text fields. A create palette for
a CAD/CAM program lor circuit boards might have a long
list of different IC types, plus wires, pads, elc.

Add Edit Display

System Modes:

The Created Object SASHEZ-LINZ~-4102
The Selected Object NIL

User Modes:

Create Palette 1 sLINE

\l

vy
L Ta

4 Line Style Palette | So:!.:

Color Palette Blue

| vaer Mode SFRIENDLY

Figure 4:

The mode window showing the defined modes and their
current values. The designer can click on the check box
at the left of a row 1o indicate that the next action
depends on the mode having the specified value.
Modes based on palettes change as the paletie s
operated. Appiications can also directly set a mode, and
one of the actions resulting from 4 behavior might be a
mode change.

A property paletic contains the different values for a single
property. MacDraw II has a property palcuc for the filling
stylc at the top of thc window, and property palcttes for the
line style, tont size, lont style, cte. in pull-down menus.
Marquisc supports palcttes which arc not always visible,
and a palette can cven be a subsct of the items in a diffcrent
widget (e.g., a section of a pull-dows mcnu). In addition,
the list of choices can be dynamically changing, for cx-
ample, if the application has commands to rcad new
librarics or 10 edit Lthe palctic itsclf.

There are Lwo important distinctions between the two types
of palettes. First, the create palette usually cnables dif-

119 -

Second Gamet Compendium

ferent interaction techniques. For example, the selection
arrow enables sele -tion, the rectangle enables dragging out
new rectangles, and the text string enables clicking to start
entering text. A property paletie is assumed o0 only set
values of properties and not 0 control interaction
techniques.2 Note that a create palette can enable various
kinds of behaviors, such as selecting and deleting, and not
just creating. The second difference between the two type-
of palettes is that Marquise assumes that objects cannot
change type, so that selections in the create palette cannot
affect the selected objects. However, clicking in property
palettes usually changes the value of that property for the
selected objects.

Create Paiettes. To make a create palette, the designer
only needs to draw the set of objects using Marquise or
Lapidary, select them, and declare them o be a create
palette using a menu command. Marquise will then add a
row to th2 mode window (Figure 4) showing the palette
and its current value. The designer would select the new
row in the mode window, click on each item in the palette
to put the system into the appropriate mode, and
demonstrate the desired behavior.

The create palette has some additional attributes which
control common features found in graphicai editors. Some
of these can be demonstrated, and the rest are specified in
dialog boxes.

¢ In some palettes, when the user clicks on an item, that
sets up a mode so that the next operation will create the
kind of object represented by that item. This was shown
in the example above, and is the way that MacDraw
works. In other cases, clicking in the palette causes the
object to be created immediately (e.g., at the current
mouse position for a popup menu of choices, or at a
computed place if the objects are laid out automatically
by the system). Other times, objects are dragged off the
palette.

o After an object is created, some applications select the
newly-created object, some leave the selection un-
changed, others add the new object to the selection set (if
objects were selected before the create), and yet others
clear the selection.

* Sometimes, after the object is created, the mode of the
create palette will change. For example, in MacDraw 1,
after creating a rectangle. the mode changes back to
selection (the arrow). However, if you double-click on
the palette, the mode does not change after creation. In
the original MacDraw, all object creation modes changed
back to selection except for text strings.

Property Palettes. Property palctics allow the user Lo con-
trol the value of properties of objects. Typically, the samc
palette is used for specifying the global default value used
for newly-created objects, and for changing the property of
selectcd objects. The same palette might also be used to

his restriction could be lifted in the future if it hecomes onerous, but
it is consistent with the behavior of all editors we have studied.

show the value for the selccted object

To create a property palctie, the designer only needs to
draw a set of objects represcnting the different values (for
example, the line-style items of Figure 5}, and declare them
10 be a propenty paleue. Marquise then checks whether a
single property seems 1o change in cach element (as it does
in Figure 5 and in most graphical property paletes), and if
so, proposes this as the property to use. Alternatively, the
user can specify the name of the property and the value for
each item of the paleue.

’/ . , / / /M

Figure 5:
After drawing this picture, the designer wouid select the
lines, and declare them to be a property paiette. Mar-
quise would notice that the line-style changes. and
would create an appropriate palctte description.

Each primitive Gamel objcct describes which properties are
relevant 10 it, and the designer can add additional properues
for application-specific objects. Thercfore, Marquise can
aulomatically guess which properties are probably relevant
to each type of object that is crcated. These guesses are
reflected in the feedback and mode windows (Figures 3 and
4), and if Marquise guesses wrong, then the designer can
adjust the values.

Some attributes for property palettes provided by Marquise
are:

o Whether setling the property of a particular (selected)
object also changes the global default used when a new
object is created.

o [f an object is sclected that does not have the property
represented by the paletic (e.g., if the palette is for the
font property and a linc is selected), whether the paletie
goes inactive (greyed out) or not. When there arc mul-
tiple objects sclected, whether the paleue is valid of at
least one of the objccts has this property, or only when ail
of the objects have this property.

e When an object is sclected, whether the palctte shows the
value of that object. It morc than one object is sclected.
then the palcue might show the value only if all objects
have the samc valuc, pick the value of onc of the objects
1o show, show the global defauli value, or just be clecared
o show no valuc.

o If the palctte docs not ccho the value of the property
when the selection changes, then the newly selected ob-
ject might get the current valuc of the property (as op-
posed to requiring another click in the palette after
changing the selection).

Positions of new objects

Once Marquise knows which object 1o crcate, there is then
the question of where and how 10 create it. There are two

Marquise: Creating Complete User Interfaces by Demonstration

possibilities: the position is computed automaticaily, or is
specified by the user with the mouse.

Automatic Layout. Gamet has built-in routines for list,
table, tree, and graph layout. These automatically place the
nodes, rather than requiring the user o specily a location.
Each type of layout has a set of methods for creating and
deleting nodes, and Marquise allows the designer 0
demonstrate how these methods are invoked and how their
attributes are specified. Many previous systems have al-
lowed a designer to build custom graph layout applications
by writing code, but Marquise is the first to allow the look
of the nodes o be drawn and the editing behaviors (creat-
ing, deleting, editing labels, etc.) to be demonstrated inter-
actively. '

First, the designer specifies which kind of layout is
desired.? Next, the designer draws pictures to show the
graphics for the nodes (and the graphics for the arcs for
trees and graphs). If these have complex internal structure,
then the Lapidary tool wilt be useful for drawing them.
The built-in layout algorithms have many attributes that
control the display, and some of these can be demonstrated
(e.g., the spacing and direction). The rest are specified in a
dialog box.

Next, the designer demonstrates the creation behavior.
Using knowledge of the type of layout in use, Marquise
tries 0 determine if the new object should be placed in
some relation o0 a selected object, or globally with respect
to all objects. For example, in a directed-graph editor,
there might be commands for **Add new child’’ and ‘*Add
new parent.”” Marquise does not try to understand the
words in the command names. Instead, the designer would
g0 into Run mode and select a node, and then in Train
mode the designer would select the command. Finally, in
Show mode, the new object would be created with the cor-
rect relationship to the selected node.

In some cases, the new object’s position will not depend on
the selection, but rather on giobal properties. For example,
the new object might always go at the end of a list. In this
case, the designer would make sure that no objects are
selected before demonstrating the position of the new ob-
ject, and Marquise would try to determine the appropriate
place for the object. Alternatively, the position might
depend on some globai mode, so the appropriate row of the
mode window would be selected beforc the demonstration.
Usually, the position will be obvious (¢.g., first or last), but
if Marquise cannot guess it, then currently the designer will
have to write a Lisp function to compule the position, pos-
sibly based on values in the mode window.

User Layout. Most graphical editors, however, require the
user to explicitly specify the position of ncw objects. The
example of Figure 2 shows how the simple case of a new

*Marquise cannot infer a new layout algorithm. For cxample, if a new
kind of graph layout is required, the designer has 10 program 1n Lisp, but
it can then be used by Mamuise-gencratcd programs.

line can be demonstrated in Marquise.

[t is very common for the objects 0 be constrained in thewr
placement. Marquise has built-in knowledge about ygnd-
ding, so this can be casily used in an applicaton. A more
interesting problem is attachment. For example, an arrow
connecting the boxes in Figure 6 might always be attached
to the centers of the boxes. In an earlier article (4], we
discussed how Lapidary allows the arrow prototype o be
defined interactively with parameters that refer to the ob-
Jjects to which it should be attached. Lapidary creates con-
straints that keep the arrows autached as the objects move.
Marquise allows the designer lo interacuvely show how
those parameters are filled in based on the designer’s ac-
tions. For example, look back at Figure | where a creauon
palette is being drawn. To demonstrate the arrow creation
mode, the designer would select the arrow in the create
paleae while in Run mode. This will change the value
shown in the mode window for the create palette mode
(Figure 4). The designer would then click on the check box
next to this mode, which tells Marquise that the mode is
significant for the next operation.

Assume that the arrow was defined so that setting the from
and to parameters with objccts would cause the line w0 be
attached to those objects. [n Train mode, the designer
would press down inside a rounded-rectangle, and drag out-
side. Then, in Show mode, the designer would create an
instance of the arrow with the shaft end inside the rounded-
rectangle and the arrow end at the 3 icon. Then, the
designer specifies that the rounded-rectangle corresponds
10 the from parameter, and Marquise infers that it should
determine the parameter value based on where the mouse 1S
first depressed, and that the other end should fol'ow the
mouse. Next, the designer demonstrates the mouse button-
up response by deleting the leedback line and creating a
new arrow between the two nodes. These nodes are
declared as the from and to parameters. In the future, we
will provide facilities for gravity so the dcsigner could
specify that while thec mouse is moving, the fecdback
should jump to the attachmcnt points of objects if they are
close enough.

Selection

One of the most important operations in a graphicat cditor
is selecting objccts. Typically, the sefccted object will be
shown by changing its appcarance (c.g., to reverse video)
or by showing ‘‘sclection handles’ around it (Figure 6).
Marquisc suppons virtually any graphical responsc 1o show
the selection. The designer simply draws an cxampic of the
sclection graphics (or if the object uself changes, the desig-
ncr draws the object first i its normal and then in its
selected ste). I the standard Garnet sclection widget is
desired, then it s only nccessary 10 1o 1into Show modce and
sclect an objecl. A special line of the mode window shows
which objects arc sclccied, and this value can be edited o
show whcther the ntcraction being demonstrated adds 1o
the seicction sct, removes from i, clears i, cic. This
provides a uniform, intwtive mechanism for specilying al-
most any sclection behavior. The designer can also specify
whether a different form of {cedback is uscd when there are

121 -

Second Gamet Compendium

Figure 6:
The arrows are constrained to be in the centers of the
boxes. Box 3 has ‘'selection handles’’ around it, which
show that it is selected, and the user can click on white
handles to move it or black handles 10 grow it. The
formula that computes the labels was hand-coded using
Cc32. .

multiple selections (as in Macintosh PowerPoint and
MacProject II).

Moving and Growing Objects

Demonstrating what commands cause objects to be moved
and grown works similarly to demonstrating how they are
created: first, the designer demonstrates in Train mode
what user action causes the interaction to start, and then in
Show mode, moves or grows the appropriate object. Since
the standard editing actions work in Show mode, the desig-
ner would just use the Marquise move-grow sclection
handles to demonstrate the behavior. Of course, if other
objects are attached to the moved object with constraints,
they wiil aiso move.

One complication is that often the objcct that the mousc is
over is not the object that should be modilicd. For ex-
ample, with selection handles, the uscr clicks on a handle,
but wants 10 grow the object underneath. Marquise knows
about this special case, and if the object the designer moves
is attached by a constraint to the object clicked on, then this
is reflected in the generated behavior.

Other Properties of Objects

Many properties of objects are conwolled by paicttes, but
some are not. [n some graphical cditors, 4 menu command
or double-clicking on an object opens a property sheet or
dialog box with other properties. Marquisc provides hooks
to pop up a property sheet or a dialog box created automati-
cally by Jade or interactively using Gilt. Of course, the
designer can specify which ficlds arc presented.

Miscellanecus Editing Commands

Becausc Gamet uses a rcuuncd object model, there s a
standard format for all Garnet objects. Therefore, common
editing commands such as bringing objects to the wp {un-
covered), sending to the bottom, cuting, copying, pastng,
deleting (clear), duplicating, and printng in PostScript, are
all provided. T designer simply demonstrates what uc-
tion causes it to occur, and then which operauon is desired.
Note that unlike other framcworks that provide messages
that must be overridden by each application, the code
provided by Marquise for these operations can oflen be
used without change.

Semantic Actions

Naturally, many of the commands in a graphical editor will
invoke applicaton-specific functons (someumes called
‘‘semartic actions™). Since these may involve arbwrary
computation, it is impossible for Marquise 10 infer these
from a demonstration. However, techniques like ihose
previously reported for Gilt (7] are used to allow the ap-
plication procedures to be indcpendent of the way they are
invoked (from a button, menu, double-click. eic.) and
somewhat independent of the graphics. However, most
functons will want 10 walk through the graphical objects
computing values, so thcy will clearly have o look at the
graphical objects in the window.

If the result of the function is a change o the graphic ap-
pearance of nodes, then this can be specified demonstra-
tonally. For example, a ‘“‘critical-path’’ command in a
graph editor might want ail the nodes on the critical path 10
turn red. The designer can bring np a property sheet ou the
nodes, add an on-critical-path property,’ and
demonstrate that the nodes are black when it is NIL and red
when it is T. Then, the critical-path function wculd only be
responsible for selting the on-critical-path value in
each node. This makes the applicauon function morc inde-
pendent of the graphical responsc 10 its actions.

Semantic lecdback can ofien be provided in the same way.
For example, Marguisc supports highlighuing of only those
objects that an object 1s being dragged can legally be
dropped into, as in thc Macintosh Finder. Here, a function
could be cailed 1o set a parucular property of cach object 1o
T or NIL. Then, the designer would demonsirate the ap-
propriate color change when the node s over an obicct
which has the vaiue T for that property.

Similarly, if the application wants to control which modz is
in effect, it can simply change the value of one of the mode
variables, and the designer can demonstrate interacuvely
what this controis.

EDITING

An important aspect of an intcractive builder is how to edit
the interfaces after they have been created. 1ois casy to edit
the graphics, since they can be directly manipulatcd in
Buud mode. For the behaviors, the fecdback window of

“The Gamet object system allows properties (0 he added 10 objects at
any ume.

Marquise: Creating Complete User Interfaces by Demonstration

- 122

Figure 3 shows the properues. When in Train mode, the
feedback window contnually shows the name and
properties of the behaviors being executed, so the designer
can determine which behaviors are associated with which
events. There are also commands to list all the behaviors,
or all those affecting a particular object.

CONCLUSION

One of the important questicas for an interactive oot is
what is the range of interfaces that it can creawe. Unfor-
umately, this is very difficult 10 quantify, except by ex-
ample. Using the Lapidary, Gilt and Marquise tools in
Gamet, it is possible without programming to create com-
plete user interfaces like those in Macintosh MacDraw,
MacDraw II, PowerPoint, and MacProject I (which are
surprisingly different), as well as applications with various
kinds of automatic layout for nodes. Later, we hope
expand the range of Marquise to handle gestural interfaces
(the Gamet toolkit already supports gesture recognition),
and those with 3-D graphics. We also plan 1o add suppont
for animations, which will probably make possible the
demonstration of various visualizations and video games.
Another addition will be 0 support defining constraints
among objects directly in Marquise, probably using
dgnonstrational techniques similar 0 Peridot (3] or Druid
{8].

Marquise is still under development. When it is more
robust, we will perform user-testing to see if the
demonstrations and feedback are understandable to both
non-programmers and programmers. After that, we will
release it for general use as part of the Garnet system. All
this will help show what kinds of behaviors it can capture,
and we will continually work to expand the range.

We believe that interactive, demonstrational creation of
user interfaces is easier, faster, and more fun than program-
ming. Many interactive builders have already shown that
dialog boxes and forms can be created interactively. Mar.
quise shows that direct manipulation techniques can be
used to generate the user interfaces of a much wider class
of graphical appfications as welil.

ACKNOWLEDGEMENTS

For help with this paper, we would like to thank Dario
Giuse, Brad Vander Zanden, Andrew Werth, and Bermia
Myers,

This research was sponsored by the Avionics Laboratory
Wright Research and Development Center, Acronautical
Systems Division (AFSC), U. S. Air Forcc, Wright-
Patterson AFB, OH 45433.6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597,

The views and conclusions contained in this documeat arc

those of the authors und should not be interpreted as
represenuny the ofticial polices, cuber expressed or im-
plied, of the U.S. Government,

REFERENCES

1. Gene L. Fisher, Dale E. Busse, and David A. Wolber.
Adding Rule-Based Reasoning 10 a Demonsuaucnal lnier-
face Builder. ACM SIGGRAPH Symposium on User In-
terface Software and Technology, Proceedings UIST 92,
Monterey, CA, Nov., 1992, pp. 89-97.

2. Anthony Karrer and Walt Scacchi. Requirements for an
Extensible Object-Oriented Tree/Graph Editor. ACM SIG-
GRAPH Sympaosium on User Inerface Software and Tech-
nology, Proceedings UIST'90, Snowbird, Uwh, Oct., 1990,
pp. 84-91.

3. Brad A. Myers. Creating User interfuces by
Demonstraiion. Academic Press, Boston, 1988.

4. Brad A. Myers, Brad Vander Zanden, and Roger

B. Dannenberg. Creaung Gruphical Interactive Applicauon
Objects by Demonstration. ACM SIGGRAPH Symposium
on User Interface Software and Technology, Procecdings
UIST'89, Wiiltamsburg, VA, Nov., 1989, pp. 95-104

S. Brad A. Myers. Encapsulaung Intcracuve Behaviors.
Human Factors in Computing Sysiems, Proceedings
SIGCHI'89, Austin, TX, April, 1989, pp. 319-324.

6. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Edward Pervin,
Andrew Mickish, and Philippe Marchal. “Garnet: Com-
prehensive Support for Graphical, Highly-Interactive User
Interfaces”. /EEE Compuier 23, 11 (Nov. 1990), 71-835.

7. Brad A. Myers. Separating Application Code from
Tookkits: Eliminaung the Spaghetu of Call-Backs. ACM
SIGGRAPH Symposium on User Interface Software and
Technology, Proceedings UIST 91, Hifton Head, SC. Nov |
1991, pp. 211-220.

8. Gurminder Singh. Chun Hong Kok, and Teag Ye Nean
Druid: A System (or Demonstrauonal Rapid User Intertace
Development. ACM SIGGRAPH Symposium on User In-
terface Soltware and Technology, Proceedings CIST™90,
Snowbird, Uah, Oct., 1990, pp. 167-177.

9. John M. Viissides and Mark A, Linton. Unidraw: A
Framework for Building Domain-Specific Editors. ACM
SIGGRAPH Symposium on User Intertace Software and
Technology, Proceedings UIST™8Y, Wilhamsburg, VA,
Nov., 1989, pp. 158-167.

10. David Wolber and Gene Fisher. A Demonstrational
Technigue for Developing Intertaces with Dynanucaiiy
Crealed Objects. ACM SIGGRAPH Symposium on User
Interface Software and Technology, Proceedings UIST'91,
Hilton Head, SC, Nov., 1991, pp. 221-230.

Screen Shots from Selected Garnet Applications

ted by
Brad A. Myers

School of Computer Science
Carnegie Meilon University
Piusburgh, PA 15213

Abstract

As of the winter of 1993, Garnet has been used by over 40 projects from all over the world. The following pages
show pictures of a few of those applications. None of the applications shown in the pictures were developed by the
Gamet group—they are all thz work of other projects, and the pictures and text were provided by the developers.
Most were generated by Gamet’s code that produces Postscript files directly from the graphics on the screen. If you
are using Garnet and have interesting screen shots, please send them along with a description of your project, ©
garnet@cs.cmu.edu.

Many of these pictures were originally in color. If you have a color printer and would like 10 see the original
pictures, they can be retrieved by anonymous FTP from a.gp.cs.cmu.edu in directory
/usr/garnet/garnet/doc/usegarnet/.

Pictures from Projects Using Garnet

Companies
1. Corporation For Open Systems
Automated Protocol Analysis/Reference Tool (APART)
Frank J. Wroblewski
2. Design Research Instinute (Comell & Xerox)
(various)
Jim Davis
3. Deutches Forschungszenoum fuer Kuensuiche Intelligenz GmbH
COSMA
Stephen P, Spackman
4. GE Research and Devel Center
Metallurgical Expert Systems for Manufacturing
K. J. Meltsner
5. GE Research and Development Center
SKETCHER
K. J. Meltsner
6. Hughes Al Center
NLP Project
Seth Goldman or Charles Dolan
7. Lawrence Livermore National Lab
PLANET (Pump Layout ANd Evaluation Tool)
Tom Canales
8. Microelectronics and Computer Technology Corp. (MCC)
Scan: Intelligent Text Retrieval
Elaine Rich
9. The MITRE Commoration
AIMI (An Inielligent Multimedia Interface)
John D. Burger
10. National Science Center Foundation

GRAPHICAL-BELIEF
Russell Almond
12. The MITRE Corporation
AMI (An Intelligent Multimedia Interface)
John D. Burger
13. Transarc Corporation
Lisp GUI for Encina
Mark Sherman
14. U § WEST Advanced Technologies
KBNL natural language system
Randall Sparks
15. USCAsSI
Humanoid
Pedro Szekely
16. USCASI
SHELTER knowledge-based deveclopment environment
Pedro Szekely

Universities
17. (‘.xmegxe Mellon University, CS

I D Tygar and J. M. Wing

18. Camnegie Pvfellon University, CS
Learning Calendar System
Conrad Poclman

19. Camegie Mcllon University, CS
fnteractive Fiction Editor
Merrick Furst

20. Camegie Mcllon University, CS
Redstone
Jeff Schlimmer

21. Camegie Mellon University, CS
Architectural Design
Mikako Harada

22. Carnegie Mclion University, CS
PURSUIT
Francesmary Modugno

23. Camegie Mcllon University, ERDC
LOOS

Ulrich Flemming or Robent Coyne

24. Camegic Mcilon University, Math
Educational Theorem Proving System
Pecier Arxirews

25. Curnegic Mcllua Universily, Psycte
Soar Graphics Interface
Frank Ritter

26. Camecgie Mcllon University, Robotics
MICRO-BOSS
Norman Sadeh

27. Camegie Melion University, Robotics
SAGE Data V .:ualization
Steve Roth

28. MIT, Dept. of Brain and Cognitive Scicnces
SURF-HIPPO Ncuron Simulator
Lyle J. Borg-Graham

29. MIT, LCS, Computation Structures Group
Debugging tools for the Id Language
Steve Glim and R. Paul Johnson

30. State University of New York at Buffalo, CS
Air Baule Simulation
Henry Hexmoor

31. State University of New York at Buffalo, CS
SNePS Graphical Ut
John S. Lewocz

32. Tulane University, CS
Nawral Language Processing
Robert Goldman

33. Tulane University, CS
THESEUS
Raymond Lang

34. University College London
The Cognitive Browser
Gordon Joly

35. University of Leeds
Graphical Mulii-User Domain Designer
Roderick J. Williams

36. University of Leeds
CLARE
Nikos Drakos

37. University of Leeds
ADVISOR
Andrew 5. Cole

38. University of Leeds
PORSCHE
Colin Tauersall

39. University of Saskatchewan

DISCUS (Disuibuted Computing at the U of §)

Beth Protsko (Uscr Interface only)
40. University of Southem California
Dynamic Aggregation in Qualitaiive Simulation
Nicolas Rouquette
41. University of Washington, CS
Multi-Gamnet
Michaet Sanneita
42. University of Washington, CS
Electronic Encyclopedia Exploratorium
Mike Salisbury

A list of some of the projects that have uscd or arc using the Garnet user interface development eavironment, as ol
February, 1993, If you arc using Gamnct and your project is not here, please send us mal!

125 - Second Gamner Compendium

Control Panel
"1y Depry Noc.-uw.y.

xso w’ciwo
V4o %deo
me q-aocxnuo

Nikos Drakos

Computer Based Learning Unit, University of Leeds, UK.
CLARE

nikos@cbhbl. leeds.ac.uk

A collaborative project on an environment for the specification, testing, maintenance and automatic generaton of
application software. The context is batch process controt in Chemical Engineering although 1t is envisaged that the
applicability of the environment will be more general. A ‘domain expert’ will be abie to specify knowledge about
plant subsystems, plant configurations, and the allowable generic operations and constraints on cach plamt
subsystem. An ‘application engineer’ will then use the system to ‘glue’ together predefined operations in order o
make specific producis. The system will then generate process control code for particular target hardware. Gamnet is
being used to capture and visualise plant and process information through schematgcs, process diagrams, intcructive
simulations and simple animations.

Nikos Drakos, ''‘Object Oricntavon and Visual Programming’, in Mamdouh [brahim. cditor. QOPSLA 02 Waorkshop on
Object-Oriented Programming Languages: The Next Generation, Yancouver, B.C. Canada, October 1%
1992. Extended Abstract. pp. 85-93.

- 126

Magnity Mesh

Kenneth Meltsner

General Electric Company, Corporate Research and Development
Metallurgical Expert System

meltsner@crd.ge.com

A mesh created using a virtual aggregate for the polygons and another virtual aggregate for the square knobs. For
the polygons, the virtual aggregate is passed a prototype for a polygon, and an array conunmng the list of pomts and
the color for each polygon. The vintual aggregate then pretends to allocate an object for each clement of the array.
but actually just draws the prototype object repeatedly.

Kemneth J. Meltsner. **A Metallurgical Expert Sysiem for Interpreung FEA."" Jowrnal of Metals. Oct. 1991, vol. 43, no. 10, pp.
15-17.

127 - Second Garnet Compendium

sevscammwrs: CCALTT 3 semr

Aonad Shama Ambal Suitim

speuily inputs fox PNMEED-TTWPL .TE

=]

Lraite Lot iams Bouier Nete
e et m—
o G -SRI 33710

. B PRS- 11
< MUR-MDIY SNIMETCS ST S LTI
o BT AL SR L X
Wy BT WP PRE-11)

AN L M

Pedro Szekely
USCASI

Humanoid
szekely@isi.edu

Humanoid is a user intcrface design envirominent. The goal of Humanoid s to allow micrface designers 1o
incrementally construct intcrfaces by composing building blocks (gamet gadgets and interactors). Humanowd allows
designers to specify the conditions when gadgets and interactors are appropnate for displaying/intcracung with
information. Given and application data structure, Humanoid constructs, at run-lime, a display appropriate for
interacting with the given data structurc. Humanoid keeps track of how the display depends on the mput data, so
that if the data changes at run-time, Humanoid can automatically update/reconstruct the display.

Pedro Szekely, Ping Luo, and Robert Neches, **Facilitating the Exploration of Interface Design Alternatives: The HUMANOID
Model of Interface Design.’” Proceedings SIGCIIF'92. {luman Factors in Computing Systems. Maonterrey,
CA, May, 1992, pp. £17-515.

- 128

Pictures from Projects Using Gamet

Leave & Trai.

{:mmsa Number of Rows
{:wmaa Number of Cols

(:%BQE’] Room wldth
{:@mg'&'} Roorn Height

)

Pausa at Tholce Palints

1

Turn Toward Exit

)

Depth Flrst Search

8resdth Flest Searcn

Best Firat 5@arch

,@oonag

Raymond Lang

Tulane University, Computer Scicnce Department
THESEUS

lang@rex.cs.tulane.edu

These are images of windows from the THESEUS application used by the Tulanc Umiversity Computer Science
Department on guided tours of the department given to visiting high school seniors and other inicrested parties.
THESEUS is intended 1o be used as part of a presentation on what the study of computer scicnce cntails. [t does thus
by showing graphically the progress and results of common search methods applied (o the problem of finding the
exit of a randomly created maze. THESEUS was developed in CMU Common Lisp version 16d and the Gamet
X-Windows toolkit version 2.01.

R. Raymond Lang, THESEUS: Using Maze Search to Iniroduce Computer Science. Tcchnical Report **** Computer Science
Depariment, Tulane University. ****, 1992,

H wnd vendaliing wnd loecing shops

Bl Demematrators: marcaing.

§ Tastic: pelicisg tasl.
i Lemataen. Suzclifle deemue.
sarcaing.

Hominat 181210 BoriNItng, 0311 (o howm, Jomewceli 8t isvg,

Repese from Dut 1 (S ac 1415
Testic: swasiing otdets.
Lacatian 27%eott Averas

Repege frea Jat M () ac ll”f
THCTIC. WBI:RANg cocdam,
Locatian: Shackleten Place. clase by Oixons

Regece from Saat 18 (MX) et 24.1S

TRGRIC ARCI2Ang Cocdom.

Lecation Sasckleten Place, clese by the buslding
nte.

Demamsteators - BArcauNg. S1tCing down. demenstrating.
wnd vandalizing ad Lootang shops

Repert from Tut 1J (M) ae 14 1S
Taetie sars=ang cecdon.
Locataan: Suzslaffe Mewnue.
Demenetsatars: wageaing.

Repere from thut 7 (M) ac 14:1S.

Senanacratsrs:

Roderick J. Williams
The University of Leeds, Leeds, LS2 9IT, UK.

Cactus

rodw@cbl.leeds.ac.uk

SO

PN

~
.'Jn 0
\

129 . Second Garmet Compendium
TWAK icom
— oy |[6] Commanyg Sender [4] &) ;
Ponce Resmace Tabie Avarlsble Casands Catmsand Parasetore L—-——-———:
fighlight Meazage Avast Ocdecy Pelice UmME ‘ oy
e L atent Mag
Unae Id e Ressages °3 Narching Cotdon i ume T Q)
[l arat 39 OM) wa:imung :ordon-front O O Location (opt) o iy
Unie M (M) Naz:ding cordon O O Cocdon Pomce Retod
::: :: ::: ::r.xc “::: g 8 Address Ciowd 1 { Systamy Cant
14 A8 Cor
. don Tramee wars]
f oz 19 () Seazic covdom .| 0 Advancing shaeld Cac j:_
Unat 11 (M) Maczaing cozden a O Re-Gconp
Uit 7 (NE) Palicing casl [(m} Tacticsl Vithdrawl
§ tnze 6 (IC) Asrortine ncustien a] Repart
o e ey 1 —
[8] Muan Mwssene Loy SRR ©)| (5} wecwtend Mine at 14:13 [2)]
§ Frw wiim TB F1387R Plaw s, S Tnaé B The Pehavey f.{!— - + R

A ow
(SR

A systemn has becn developed to tmin senior police officers to manage public order incidents, such as marches. The
system cnables pre-demonstration planning, the management of (simulated) events requiring meta- and contingency-
planning, and post-event debricfing. The training incidents are gencratcd by intcractions between awtonomous

agents, and lake place in a simuiated world denived from digital map dawa.

there are facilities w0 graphical specify the agents behaviours.

Hartley, R.J., Ravenscroft, A.

and Williams, R.j.

In addition to the traimng environment

“*Cactus: Command and Control Traiming Using Knowledge-based

Simulations."’ lnueractive Learrung International, Vol. 8, na. 2, 1992. vp. 127-136.

Pictures from Projects Using Garnet - 130

—— Y - AP~ vOnE
—— 23131218
m——— 31211
—— 1312212

0. 300,

Mot ion

| ser-semearing.3- 2077220568 Nistelagy
Lyle J. Borg-Graham
MIT Dept. of Brain and Cognitive Sciences

Surf-Hippo
lyle@ai.mit.edu

The SURF-HIPPO Neuron Simulator is a circuit simulation package for investigating morphometrically and
biophysically detailed models of singlc neurons and smail networks of ncurons. SURF-HIPPQ allows ready
construction of multiple cells from various file formats, which can describe complicated dendnitic trees in 3-space
with distributed non-linearities and synapuic contacts between cells. Cell geometrics may also be traced from the
histology directly on the screen, using the mouse. An exiensive .user intertace is provided, including menus, 3D
graphics of dendritic trees, and data plotting. Data files may also be saved for analysis with external tools. A
research version of SURF-HIPPO (available by anonymous ftp from ftp.ai.mit.edu {pub/surf-hippo]) is written in
LISP, and is configured to run using the public domain CMU Common Lisp and Garnet packages. Qur version is
compiled for SPARC workstations, and should be easily ported 10 other UNIX machines running X. LISP is a useful
simulator language because it has the benefits of a powerful interpreted script language, but it may aiso be comptled.
Thus it ts convenient o integrate custom code into SURF-HIPPO. The simulator may also be used with a minimum
of programming expertise, if desired.

Borg-Graham, L. and Grzywacz, N. M. ‘A Model of the Direction Selectivity Circuit in Retina: Transformations by Neurons
Singly and in Concert,”” in Single Neuron Compuation, edited by T. McKenny, J. Davis, and S. F. Zometzer.
Academic Press, 1992.

131 - Second Gamet Compendium

[

Terrain Type

Roderick J. Williams

The University of Leeds, Leeds, LS2 9JT, UK.

GMD (Graphical Mud (Multi-User Domain) Designer)
rodw@cbl.leeds.ac.uk

This application is aimed at supporting the creation of text-based multi-user domwns. Current techniques use
text-based tools to create these environments, but these tools have very litle computer support s0 complexity and
consistency are sacrificed. Our new application supports the graphical creation of MUD arcas and enforces
topological constraints together with hierarchical grouping of features. The graphicai ool can be used tn a number
of modes which allow the information to be filtered, zoomed and viewed in 2.5 D. Arcas created can be printed and
additionally they can be saved as native code that can be executed.

Pictures from Projects Using Garnet - 132

4t - 1S~
o L]

28~-Nev .’M
L]
' 20~vv 14-Mov
1-Dat 4 »
.7-5- om L
.8 we. s ———— “we e “0e 0
M pe-ti TmetL e B [=)]
Avsnan ek mmet
Steven F. Roth
Camegie Mellon University, Robotics Institute
SAGE

roth@isll.ri.cmu.edu

The SAGE project is developing systems which automate the process of designing presentations of informauon. An
automatic presentation system is an intelligent interface component which receives information from a user or
application program and designs a combination of graphics and text that cffectively conveys it. [t's purpose 15 10
assume as much responsibility for designing displays as required by a user, from layout and color decisions to
broader decisions about the types of charts, tables and networks that can be composed within a display. The SAGE
project is developing an interactive data exploration environment whicn contains automatic display design
capabilities integrated with data navigation, manipulation and modification tools. Thesc tools are being used o
explore large amounts of diverse data from marketing, logistical, real estate, census and other databases.

Roth, S.F. & Mauis, JA. “Data Characterization for Inteiligent Graphics Presentation”, In CHI'90: Proceedings of the
ACMISIGCHI Conference on Compuser Human Inieraction, Seaitle. April, 1990. pages 193.200.

133 - Second Gamnet Compendium

This is 2 sampie note.

A

Model

View

Hierarchy

File

Mike Salisbury

University of Washington, Department of Computer Science
Electronic Encyclopedia Exploratorium
salisbur@c¢s.washington.edu

The Electronic Encyclopedia Exploratorium is an electronic how-things-work book. It allows the user 0 learn about
devices by experimenting with the components of those devices in a lab simulation seuing. A causal model
simulator lies beneath the user interface which simulates the current device and can provide causal explanations of
the results of that simulation. Other high-leve! tools are planned for- future enhancement.

F. G. Amador, D. Berman, A. Boming, T. DeRose, A. Finkelstein, D. Neville, Norge, D. Notkin, D. Salesin. M. Salisbury,
J. Sherman, Y. Sun, D. S. Weld, and G. Winkenbach. Electronic "How Things Work" Articles: A
Preliminary Report. University of Washington, Department of Computer Science and Enginecring Technical
Report 92-04-08. June, 1992.

Pictures from Projects Using Garnet - 134

TOP-SPACE

h BROWSING

MAC-METRODS ~FOR-ACCESY - I TEM

EVALUATE-PROSR - IN-WINDOW

MAC-METHOD~OF-CLICK-ON-ITRM

<_

~METHODS ~FOR-CHANGE\ CURRENT -WINDOW
MAC-METROD ~CF -DOUBLR-CLICK-ON-ITEM

Frank E. Ritter .
Department of Psychology, U. of Nottingham
The Developmental Soar Interface
Ritter@psyc.nott.ac.uk

The Developmental Soar Interface provides a graphical and textual interface to observe and modily models
(programs) for Soar, an Al programming language that also realizes a unified theory of cognition. Garnet is used (©
graphically represent Soar’s goal stack and internal state, and to help users modify and observe structures in Soar.

Ritter, F. E. (1993) TBPA: A methodology and sofiware environment for testing process models’ sequential predictions with
protocols, PhD thesis, Department of Psychology, Carnegie-Mellon University. Reprinted as techrepornt
CMU.-CS-93-101, Camegie-Mellon University.

135 - Second Gamet Compendium

on 1¥Mectit et 2 39 o TP ryryl;

OFRE =1 4

stuplwn, 0iis, oe

: fCOSMA Damne

Stephen P. Spackman

Projekt DISCO

Deutches Forschungszentrum fuer Kuenstliche Intelligenz GmbH
COSMA, the CoOperative Scheduling Management Agent
spackman@dfki.uni-sb.de or stephen@acm.org

The calendar window shows the dark bar of the past sweeping, one pixel each half hour of the day and night, across
a horizontal line [not visible in this Postscript image} summarising by its width and height the user’s working hours
and appointments, tentative and firm. The marginal time tags can be dragged up and down, and it will eventually be
possible to type over the top of them to jump to a given time. The datebook window presents an expanded view of
time as an infinite tape from which appointment forms can be popped up by pointing or by sweeping out free areas.
Most importantly, when arrangements involve several people the system communicates with its peers and with
meeting participants by reading and writing email in German; the displays are updated in real time.

The fields of the appointment form are semi-structured: they can be filled in with the help of menus - such as that
visible on the lower window - that drop down from the small icons on the right; numeric. dute and ume values
within them can be incremented and decremented directly with mouse buttons; and experienced users can lype
structured values straight in. Unconstrained German text (the graphic interface will soon be Englist/French/German
trilingual, but the natural language parser and generator speak only German) can also be entered. 1t 1s routed to the
natural language system for analysis; planned improvemerts to the pragmatics module will allow vou 1o give up on
the structured form completely and type informal questions and instructions into the noics field, as you might for a
human secretary who had stepped out of the room.

The work underlying this picture was supported by a research grant, FKZ [TW
9002 0, from the German Burdesministerium fuer Forschung und
Technologie to the DFKI project DISCO.

Elizabeth A. Hinkelman and Stephen P. Spackman, ‘*Abductive Speech Act Recognition, Corporate Agents and the COSMA
System,” in Abduction, Beliefs and Cortext: Proceedings of the second ESPUIT PLUS workshop in
computational pragmatics. W. J. Black and G. Sabah and T. J. Wachtel, eds. Acadermic Press, 1992,

